

Digitized by the Internet Archive in 2011 with funding from Princeton Theological Seminary Library
http://www.archive.org/details/descriptionuseof00gunt

DESCRIPTION

ANDVSEOFTHE SECTOR, CROSSE-STAFFE, and other Instruments:

VVith a Canon of Artificiall Sines

 and Tangents, to a Radius of 10000.0000 . parts, and the vee thereof in Affrooomie, Navigation, Dialling, and Fortification, 心6.
The fecond Edition mush augmented.

By Edmo Gunter fometime Profeffor of Aftonomie in Grefam Colledgo in London.

IONDON;
Printed by William Iones, for Iames Bowler, and are to be. fold at the CMarigold in Pauls Church- gard.

1636

अHT 103 gVaII

gratruatur ?

dransman rochos

$$
\Rightarrow \varepsilon \approx i
$$

DOMINODn. fo 0 O $N N I$
COMITI de BRIDGEWATER' VICECOMITI de BRACKLEY
BARONI de ELLESMERE, EQVITI ORDINIS HONO RATISSIMI QVI DICITVR BALNEI, Do PR疋SIDENTI WALLIE: LIMITVMQ. NEC NON REGIEMAIESTATIA SACRIS CONSILIIS。\&c.

Lucubrationes has fuas Mathematicas.

> D. D. D.

Emm, Guntimo.

$$
\begin{aligned}
& \therefore-9.0 .0 .0
\end{aligned}
$$

. 53420.53

The Contents.

THE CONTENTS of the first brooke of the Sector.

Chap. I.

THe defeription, making, and generall vie of the Secor.
page. 1.
Clap. 2. The vel of thefcale of lines.
pas. 19.
To Set done a line reform bling any given parts, or fracion of parts. pal. 19.
Toiscreafe or diminish a line in agiven proportion. pag. 20
To divide a line into parts giyen.

Tofinde a proportion between two or more right lines given. fag. 22.
Two lines being given to find a third in continual proportion page. 23.
Three lines being given, to find a fourth in difcontinuall proportion.
To divide a line in such fort as another line is before dinjed.
page. 25.
Two numbers being given to finder a third in continual proportion.
Three numbers being given to find a fourth in difcontinuall proportion.
page. 27.

Chap. 3. The vf of the lines of fuperficies $1 . T_{\circ}$ find a proportion between two or moro like Superficies. " page. 29.

To augment or diminish a superficies in a given proportions page. 30.
To ode ore like Superficies to another To subtract one like ruperficies from another .pa. 30.
To find a mseane proportionall between two lines gives. pa.31. To make afquare equally to a superficies giver." "Dag. 32. To find a proportion between superficies though they be shlike one to the other. par. ${ }^{2}=$
To make a Superficies like to one fisperficies, and equall to anotber,
To find a means proportionally betweene two numbers giver. page. 34.
To find the Square vote of a number the vote being given, to find the fquare number of that route. page. 35.
Three numbersbeing given, to find the fourth in a duplica. ted proportion.
page. 37.
Chap, 4. The voe of the lines of folids. To find a proportion between two or mors like folios pay. 39.
To augment or diminifo a fo. lid in a given proportion $\mathrm{pa} .4^{\circ}$ To add one like solid to nob

The Contents.

cher. To fubtralt one like folid from another.
page. 40
To find two mean proportionmall lines between two extreme lines given.
jag. 42.
To find the like betimene two numbers.
pas. 43.
Tofind the cubique cote of a number.
page. 44
Three numbers being gives, so find the fourth in a triplicated proportions.
page. 46.
The contents of the fecond book of the Sector

Chap.1. Of the suture of fines chords, tangents, and fecants.
pas. 49
Chap. 2. The geneal vie of fixes and tangents.
page. 5^{2}.
The radus being knowze, to find the right fine of any arke or anisole.
pan. 5^{2}
The right fine of any arke being, to finds the radius.
pa. 53.
The Radius of a circle, or the right fine of any arke given; or ajtraight line refem'ling a fine to find the quantitie of that unksorone fine
page. 53.
The radius or any right fine aiken, to find the versed fine of any arke.
Hawing the diameter or fermidiameter, of a circle to food: the
chords of every arke. pas. $54{ }^{\circ}$
Hawing tho right fines refersbling the chord; and ver/ed fine to find the diameter and radius

The chord of any ark being gisen, t find the diameter and. radius.
pas 58 :
Having the diameter of ans clip $\sqrt{2 s}$, to defcribe the fame upon a plane.
pas. 58.
To open the Sector to any angie or the Sector Being opened to find the quantitic of the angle
page. 60.
To find the quantitic of any angle giueiz. jag. 62. Iponaright line and a point gins in it, to make ax angle equail to any angle given. pa. 63
To divide the circumference. of a circle into parts given. p. 63

To divide a right line by ex:treame and meane proportion.
pas. 54
Chap. 3. of the projection of the Sphere in plano. pig. 65
With a Norturratll to Shew the hour of the night. pag.72. Chap. 4. Of the revolution of right-line triangles. jag 79 Chap. 5. Of the refolution of Spherical triangles, in 28 cares
page. 90.
Chap: 6. Of the vie of the AReridiais

The Contents.

Meridian line.To diuide a Seaebart afier Mercators proiection with atable to that purpofe.
pag. 105.
To find how many leagues anfreer to one degree of longitude in enery feuerslllatitude p.ir 6
To find how many leagues anfiver to one degree of Latitude, in enery fenerall Rumb. paoI 18.
By one latitu de, Rrsmb and diffance, to find the difference of latitudes.
pag. i2I.
Byithe Rumb and both latitades, to finde the difance opon the Rumb.
pag. 122.
By the diftance and botb lati: Bades, to find the Rumab p.ri26.
By the longitude aid latitude of trio places, to find the Rumb.
pag. 127.
By the Rumb and booth latitudes, to find the difference of loingitude, with fewerall Tables to this purpofe, which may alfo Serue for drawing of the Rumbs uporinany chart or Globe p. 128 By the difference of longitude Rumbandone latitude, to finde the other latitude. pag: 139
By one latitude, Rumb, axd aiffance, to find the difference of long itude?
pag. 140.
By one latitude, Rumb and difference of long itude, to finde the dijfance:
pag: 142:
By oñe latitude, diftance and
difference of Longitule, to finde the Rumb, pag: 143: By the longitude of ớ latitude of two places, to finde their diflance «pon the Rumb: p: 144:
By the latitude of two places and the diftance, to firde the difference of Longitude: p: x 45 : By one latitude, dijfance and differesce of longitudes to funde the differêce of latitudes $: \mathrm{p}^{1} \mathrm{I}^{5}$.

The contents of the third booke of the Sector.

Chip, r: Of the lines of quadrature. Tomake a Jquareie. quall to a circle, or a circle equall to a (quare. . P, 47 Toreduce a circle or afoure into an equall peintagon , or otber like fided and like angled figure pas. 14^{8}
To fivà a right line equall:to the circumference of a circle, or otherpart thereof. pag. 4 ,
Chap.2. Of the lines of Segments. Todivide a circle into troofegments;according to a proportion given: or to finde a proportion between a circle and bis Segments given. pag. 150
Chapi3. Of the lines of infcribed bodies: for comparisg of the fides of the fiue regular bodies with the Semsidiameter of a/phare, wherein they may bee b_{2}

The Contents.

inscribed.
Cliap.4. Of the lines of equalted bodies, for comparing of the Fides of the fire regular bodies wist the jemidiameter of a sphere equally to those bodies.
p. 152

Chap.5. Of the lines of mettall, for finding the proportion betweene Several petals in their weight and magnitude.
pa, 53
Chap.6. Of the line of the bedder tangents for defcribing of boure-lines on feverall planes.

The Contents of the firft Book of the Crops. Siaffco.

Chap. I.F the defcription of the Staffe, and inscription of the Several lines.
pan. $1:$
Chap.2. The use of the lines of inches, for perpendicular heights and distances. p. 4
Chap.3. The vo of the tangent lines for taking of angles and observing the altitude of the Suse.
p. 9

Chap. 4. The ape of tine lines of equall parts, ioyned with the lines of chords, jor protracting
of right line triangles. pa. 13
Chap. 5. The eff of the meradian line in making of a Seachart, and pricking downs the may of a Sip.
p. 15

Chap. 6. Of the general vie of the line of numbers for find ing of proportionally numbers, and extraction of roots. p. 19

Chap.7. Of the generally vie rall vie of the lines of artificiait fines.
page. 25
Chap 8. The vel of line of artificial tangents, in res Solving of Pharicall triangles. p. 26

Chap. 9. Of the generallufe of the lines of Sines and Tangents ioyned with the line of numbers in refolving of right line triangles.
p. 28

Chap. io. The generally vi of the line of versed Sixes is reSolving of a Pharicall triangle, where in three fides are knozone, and an angle required.
p. 37

The Contents of the fecond Book of the CroftStaffer.

Where the former lines of proportion are more particularty explaxed in Several kinder.
pay. 39
Chap.1. The ufo of the line of numbers in f aperfficiall miafire.

In

The Contents.

In finding the content in squaring of is circle. pa. 40
Chap. 2. Tho veg of the line of numbers in the measure of land by perches and acres. p. 45

Chap 3. Of the wee of the line of numbers in solid medfare in finding the content of a furred solid,
p. 47 and of a cylinder,
p. 49

Chap .4. The vie of the line of numbers in ganging of veltels, page. 62
Chap.5. Of refolving such Aftrenomicall propofitions as are of ordinary v / e in the araalice of $\overline{\text { Navigation, as in find- }}$ ing the altitude of the Susie.
p. 65

The Sines declination. The time of the Sunnes rifing and Setting.
p. 66

The amplitude.
The time and altitude when the Sun commeth to be due Raft or Weft.
p. 68

The Sines altitude and azomut at the bore of $\sqrt{2} x$. p. 69

The azimuth at any altitude. p,70
The boure of the day.
p. 73

Theright alcenfion.
With the manner of revolving these Propositions by tables of artificiall Sines and Tangents. pa. 76 And the funding of the warm-
ation of the compaffe:
p. 82

Chap. 6. Of foch nauticall questions as are of ordinary vel concerning longitude, latitude, rumba and diftance. pa. 8_{4}

With an Appendix of the voe of an inftrument in forinc of a Croffe-Bow, for the more alice finding of the latitude at Sea. page. 100

The Contents of the third Bookie of the CroffeStaff.

The difingion of Planes wobercon boure-lines may be de. scribed.
P. II 5 Of the vf of the lines of nation. bers, Sines and Tangents, for the drawing of houre-lines on alljorts of Planes. pins

To find the inclination of os Plane.
p. 120

To find the declination of a Plane.
p.12.

Chap.I. To draw the bourse linesin an aquinoctinill Plarac, P.I 25

Chap.2. To draw the borelines in a direct polar plane. p. 12.7

Chap. 3. To draw the house. lines in a meridian plane. p. 130

Chap.4. To draw the hourelives in an horizontal planes.
p. 132

The Contents.

Chap. 5. To drasothe house. lines in a prime vertically plane.
p. 137

Chap. 6. To drat the hour lines in a verticall inclining plane.

Chap.7. To draw the hour lines. in a verticall declining plane.

Chap. 8. To draw the bour lines in a meridian inclining plane.

Chap. 9. To draws the bore lines in a polar declining plane.
p. 163

Chap.Io. To draw the houre lines in a declining inclining plane.

Chap. 11. To defcribe the tropiques and other parallels of declination in an aquisoctiall plane,
p. 180

Chap.12. To describe the tropiques aisdocher parallels of declination in a polar plane.

$$
\text { p.I } 82
$$

Chap. 13. To do crime the tropiques and other parallels of declination in any other Plane, not equinoctial nor polar p. 189

Chap. 14. To describe the parallels of the figures in any of the former planes,
p. 198

Chap. 15. To describe the parallels of the length of the day in any of the former "plates,
p. 199

Chap. 16. To draws :he old vseguall planitaric bouses in the former planes, 5 pas. 202

Chap. 17. To draw the hours lines from Sunne-rifing and Sisine-fetting, in the former planes,

Chap. 18. To dram the bo: rizontall line in the former planes, p. 206

Chap, 1 . Todran the vertidal circles or azimuth in the former planes,
p. 208

Chap. 20. To defcribe the parallels of the borizonin the former planes. p. 216

To describe much lines as may. Sew the proportion of the Sbadow unto the Gnomon, p. 228

Laftly an Appendix concersing the vel of a mall portable Quadrant for the more essie finding of the howe and the a zimuth,
p. 230

Chap. r. Of the defcription of the Quadrant, $\quad .230$ Chap. 2. Of the we of the Quadrant in taking the altitude of the Sine, Moore, or Starves p-247
Chap 3. Of the Ecliptique,
p. 24^{8}

Chap.4: Of the line of de clination,
p. 249

Chap. 5. Of the circle of the 1 moseths and dazes, po
${ }^{\text {Pr as }}$ Cha

The Contents.

Chap. 6 Of the bore lines.
p. 251

Chap.7. Of the Horizon,
p. 257

Chap.8. Of the fine Stores,
p. 258

Chap. 9. Of the Azimuth lines,

Chapiso. Of the Quadrant

The Contents of the generall vire of the Canon, and Table of Logarithmes.

Chap. 1. Concrning the vel
of she line of Numbers is ret dowse ten generall propositions in the voe of the Croffe. Staff, and the fe may be applied to the Tables of Logaritbmes, pa. 2 Chap.2. Concerning the rye of the lines of Sines and Tangents is hewed in general, pas, 25. Of the Croffe-ftaffe, p. 20 Chap. 3. Concerning the ioynt vs of the lines of numbers, fine: and tangents, page 28. of the Croft. taffy,
Chap.4. Containing Some voe of right lined triangles in the praElife of Fortification. page. 49

Firft correct, and then reade with practife.

Errata Sector:

PAg. 8. line 23.reade according p. 18. line laft r- denomination p. 3 ; 1.5. r, numbers pa. 4 2.1. 1, r. were p. 46 , li. 15. r. 7. p. 45, I. 2, r. hand p. 5. I. 8. r. arke, p. 54.1.2. 5. hisp 55.1. 2. r. 15. p. 69. 1. 25. r. figne
 1. 27. r. tangent, p. 85.1. 20. r. finde it p. 106.1.5.r. Mercators proieaton p. 13.1.27. r. Rumb.1. 28, r. asin. p. 120.1. s. p. 115. 1. 7. r. by that which $1,85, r$. in the out $p, 126,1.4, r$, fift, $p, 827.1 .22, r$. so. gr.

Errata Croffeftaffe:

Pag. 2 1. s. r. Sorts. p. 5 5. 1 ir. r. oflatiruce p. 18.1. 1. r. to 51. gr. 48 m. p. 27.1 9.r. and to p. 28.1. 12. r. have another p. 37.1.3. r. fines 1. 21. to the fine p. 43 1. 23. r. (quate $47,1,1, r$, fo in the p. 53 .lirisglength p. 97. 1. ${ }^{17 . r . r \text { of pofition p. ro7.1. 27.r. as are p. 108.1. 30. r, to the day }}$ P. 112.1. 30. r. South end in, P 133.1. 5.r: being, $p: 144,1.15$, is to be $p_{0} 148,1,12, r .8$ in the, $p: 162,1: 21, r$ of the $p, 167,1: r, r$: here is p, 17 y. 1.34 , rof fuch the arke of $p_{0} 206,1: 12, r$ commonly p_{0} 208, $1:$ laft $r_{\text {a }}$ of the $\mathrm{Az}, \mathrm{p}: 233,1.3^{1,} \mathrm{r}$. the tenth of $\mathrm{p} .835,1$. 16. r. belonging to 20 . p. 24 5.J. I2. r. hang.

Errata to the wre of the Casion:

Pagé z, 1. 6, r. $19,1.22$, r. 100, p. $3,1.4$, ro added to, p. 6, in margin, ro factus, p. 20, 1, 3, r. p. 25, le 9, P. 90. p. 34.1: 23. r. 103 .1. 25 . r. by two pag, $42,1,7+r$ which is pag. $46,1.3, \mathrm{r}$. propofition pag. 47 . I. 1f. r. three $p, 581.16, r$, the 1,18 . r, propofition $p=52,1,20, r_{0} 90, g r, p, 6 I$, $1,26, \mathbf{r}$, ditch.

The Errata by direction to the Croffeftaffe for thole there.

Page 117, line 28, $r, 77, p .121,1,28, r, 62, p, 126,1,8, r, 36, p$, $143,1,1, r, 146 \mathrm{p} .156,1: 38, \mathrm{r}, 129, \mathrm{p}, 196,1,9, r, 190, \mathrm{p}, 199,1, \mathrm{r}, \mathrm{r}$, $69,1,4, r, 184, \mathrm{p} .202,1,14, r, 135, \mathrm{p}, 204,1,4, r, 168,206,1,8, r$ $150, \mathrm{p}, 207,1,8, r, 181,1,25, \mathrm{r}, 183 \cdot \mathrm{P}, 2.58,1,5, r, 131,138,150, \mathrm{p}$, 215,$1 ; 4, r, 163, p, 216,1,22, r, 205, \mathrm{P}, 218,1,1, r, 209, p, 230,1$, 10, $69.1,11, r, 7 r, P, 245,1,16, r, P, 72$, of the Sector, $P, 246,1,3, r$, $p_{2}, 75,1,20, r, p, 69$, of the Sector, $r, p \times 62,1,18$, put out in fcheme p, 158, Sector.

THE

FIRSTBOOKE OF THE SECTOR.

CHAP.I.

Thedefription, ibe waking, and the generall vfe of the Sectior.

Sector in Geometris, is a figure comprehended of two right lines containing an angle at the center, and of the circumference affumed by them. This Geometricall instrument having two legs containing all variety of angles, and the d ftance of the feere, reprefenting the fubtenfes of the circumference, is therefore called by the fame name.

It containeth 12 feuerall lines or feales, of which 7 are generall, the other 5 more particular. The firt is the fcale of Lizés diuided into a 100 cquall parts, and numbred by 8.2.3-4 5: 6.7.8.9.10.

The fecond, the lines of Superficies dinided into 100 B vereguall
3. The third, the lines of Solids, diaided into 1000 vnequall parts, and numbred by 1.1.1.2 3.4.5.6.7.8.9.10.
4. The fourth, the lines of Sires and Chords, diuided into 90 degrees, and numbred with 10.20.30. Vnto 90 .

Thefe foure, lines of Lines, of Superficies, of Solids, and of Sines, are alldrawne from the center of the Sector almoft to the end of the legs. Thyy are drawne on both the legs, that cuery line nay hauc his fellow. All of them are of one length, that they niay anfwere one to the other. And euery one hath his parallells, that the eye may the better difting iifh the diuifions. But of the parallells thofe onely which are iñward moft containe the true diuifionso

There are shree other generall lines, which becaufe they are infinite are plac d on the fide of the Sector.
5.Thefirt a line of Tangents, nübred with 10. 20.30.40 50. 60 . fignifying fo many degrees from the beginning of the line, of which 45 are equall to the whole line of Sines, the reft follow as the length of the Sector will beare.
6. The fecond, a line of Secants, diuided by pricks into 60 degrees, is the fame with that of the line of Tangents, to which it is joyned.
7. The third; is the Meridian line, or line of Rumbs, diuided vnequally into d grees, of which the firlt 70 are almoft equall to the whole line of Sines, the reft follow vnto 85 according to the length of the Sector.

Of the particular lines inferted among the generall, becaúfe there was voyd fpace.
8. The firt are the lines of Q wadrature placed betweene the lines of Smes, and noted with ro. 9. 8. 7. S. 6. 5. 90. 2
2. The fecond, the lines of Segments placed betweene the lines of Sines and Superficies, diuided into 50 parts, and nu mbred with 5.6.7.8.9. 10.
10. The third, the lines of Infcribed bodies in the fawe Sphere, placed berweene the fcales of Lines, and nored with D.S.I. C. O.T.
1.1.The fourth, the lines of Equated bodies, placed betwen the lines of Limes and Solids and noted with D.I.C.S.O.T 12. The fift, are the lines of Mettalls, inferted with the lines of Equated bodies (there being roome fufficient) and noted with thefe Characters ©.하․ D.9.ठ. 4 .

There remaine the edges of the Sector, and on the one I haue fet aline of luches, which are the twelfth parts of a foote Englifh : on theother a leffer line of Tangents, to which the Gromon is Radius.

2 Of the meaking of the Sector.

LEt a Ruler be firt made either of braffe or of wood, like unto the former figure, which may open and Thut vpon his center. The head of it may be about the twelfth part of the whole length, that it may beare the moueable foote, and yet the moft part of the divifions may fall without it- Then ler a moueable Gromon be fet at the end of the moueable foote, and there turne vpon an Axis, fo as it may fometime ftand at a rightangle with the feete, and fometimes be inclofed within the feet. But this is well knowne to the workeman.
For drawing of the lines. Vpon the center of the Sector, and femidiameter fomewhat fhorter then one of the feet, draw an occultarke of a circle, croffing the clofure of the inward edges of the SeCtor about the letter \mathcal{T}.
In thisarke, at one degree on either fide from the edge, draw right lines from the Center fitting them with Parallells, and deuide them into an hundred equall parts, with fubdiuifions into 2.5 : or 10 . as the line will beare, but let the numbers fetto them, be onely $\mathbf{8} \cdot \mathbf{2 . 3} 4$ i\&c. vnto 10 . as in the example. Thefe lines fo divided, I call the lines or fcales of Lines; and they are the ground of all the reft.

In this Arke at 5 degrees on cither fide, from the edge neere T; draw other rightlines from the Center, and fit them with Parallells. Thefe fhall ferue for the lines of Silids,

The defiription of the lines.

Then on the other fide of the Sector in like manner: vpon the Center 8 equall Semidiameter, drawe another like Arke of a circle: and here againe at one degree neere on either fide from the edge neere the letter 2 draw right lines from the center, and fit them with parallells. Thefe hailf ferue for the lines of Sixes.

At ${ }_{5}$ Degrees on either fide from the edge neere 2 draw other right lines fron the center; and fit them with parallells : thefe fhall ferue tor the lines of Superfcies.

Thefe foure principall lines being drawne, and fitted with parallells, wee may draw other lines in the middle betweene the edges and the lines of L Lives, which thall ferue for the lines of inscribed bodies, and others betweene the edges and the Sines for the lines of quadrature. And fo the reft as in the example.

3: Todiuide the lines of Superficies.

SEeing the Superficies doe hold in the proportion of heir homologall fides duplecared, by the 29 . Pro. 6. lib. Euclid, if you fhall find meane proportionalls between the whole fide, and each hundred part of the like fide, by the I3 Pro. 6 lib. Enclid, all of them cutting the fame line, that line fo cut hall containe the diuifions required. wherefore spon the center A and Sernidiameter equall to the line of Lines, defcribe a Semicircle $A C B D$, with $A B$ perpendicalar to the diameter $\subset \mathcal{D}$; And let the Semidianeter $A \mathcal{D}$ be divided as the line of Lines into an hundred parts, \& \mathcal{A} E the one halfe of $A C$ diuided alfo into an hundred parts fo hall the diuifions in eLA E be the centers fro: whence you hall defribe the femicircles C 10, C 20. C 30. \& c . diuiding the line $A B$ into an hundred vnequall parts: 82 this line $A B$ fo diuided fhall be the line of Superficies, and mult be transferred into the Sector. But let the numbers: Lee to them bee onely 1.1 . 2.3. vnto 10. as in the ex ; ample.

Or thefe lines of Superficies may otherwife be transferred into the Sector, out of the line of Lines, by a table of fquare rootes: For the roote taken out of the line of Lines Thall give the fquare in the lines of Superficies.

As, to infcribe the diuifion of 25 in the lines of Superfo. cies; put fix ciphers to 25 and make it 25000000 then finde the fg.roote of this number, which will be 5000.

Take therefore 5000, our of the line: of Lines (fuppofing the whole line to be 10000) and it will giue the true diftance betweene the center, and the points of 25 . in the lines of Superficies.
So, for thediuifion of 30 , put to 6 ciphers, and make it 30000000 , whofe fq. root is 5477 . This (taken out of the line of Lines) fhall giue the place for the points of 30 , in the lines of Superficies. And the like reafon holdeth for all the reft, according to this following Table.

If any pleafe to make vfe of a Diagonal Scale, equall to the line of L ines, he may put viij ciphers to the number propofed, and make the Table of Rootsto v. places: So his worke will be more exact.

ATable of Square Rootes for the dimifion of the Lines of Superficies.

33

प		

The defoription of the lines:

SEing like Solids do hold in the proportion of their boz mologall fides triplicated, if you hall finde two meane proportionalls betweene the whole fide \& each thoufand part of the like fide: all of them cutting the fame tyó right lines, the former of thofe lines fo cut, fhall coptaine the diuifions reguired.

Wherefore vpon the centcr $A, \&$ Semidiameter equall to the line of L ines, defcribe a circle and diuide it into 4 equall parts $C E B D$, drawing the croffe diameters $C \mathcal{B}, \varepsilon$ D. Then diuide the femidiameter $A C$, firtt into to equall parts, and between the whole line $A D \& A F$ theie tenth part of $A C$, feeke out two meane proporitionall lines $A I$ and $A H$: againe betweene $A D$ and $\& \mathcal{G}$ beining tenth parts of $A C$, feeke our two meane propentitionills $A L$ and $A K$, and fo forward in the tef: So fhall the line A B, bediuided into 10 vnequall parts?

Secondly, diuide each tenthpart of the line $A C$ into zo more, and betyeene the whole line $A D$, and each of thom, feeke out two meane proportionalls as before: So Thall the line $A B$ be diuided now into an hundred vnequall parts.

Thirdy, If the length will beare it, fabdiuide the line 'AC once againe, each part in ten more : and betweene the whole line $\boldsymbol{A} \mathcal{D}$ and each fubdiuifion, feeke two meane
meane proportionalls as before. So should the line $A B$ be now diuided into 1000 parts. But the suldr being Thort, it thall luffice, if hofe 10 which are neareft the center be exprefled, the reft be viderftood to be diuided, though actually they be diuided into no more then 5 or 2, and this line $A B$ fo diuided fhall be the line of Solids, and mult be transferred into the Satior : But let the numbers fet to them be onely 1. 3. 1. 2. 3.\&c. vnto 10. as in the example.

Or thefe lines of Solids may otherwife be transferred, into the Sector, out of the line of Lines (or rather, out of a Diagonall fcale cquall to the line of Lines) by a table of Cubigue Roots. For the Root, taken out of the line of Lines, flall give the cube in the lines of Solids.

As to infcribe the diuifion of 125 in the lines of Solids; put xij. ciphers to 125, and make it 125000000000000: Then find the cubique Root, of the number, which will be 50000 . Take therefore 50000 out of the line of Lines, (fuch as the whole line is $\mathbf{1 0 0 0 0 0}$) and it will giue the true diltance betweene the points of 125 in the lines of Solids.

So, for the divifion of 300 , put to xij. ciphers more and make it 300000000000000 , whofe cubique Root. is 66943 This, taken out of the line of Lizes, Thall giue the place for the points of 300 in the lines of Solids. And the like reafon holdeth for all the reft, according to the enfuing Table.

LSTable of Cubique Rooses.

For divifors of the Lines of Solia's.

s To diuide the lines of Sines and Tangents on the

fide of the Sector.

V
Pon the center A, and femidiameter equall to the line of Lines, defcribe a femicircle $A B C D$, with A \mathcal{B}, perpendicular to the diameter $C D$. Then diuide the quadrants $C B, B D$, each of them into 90 . and fubdiuide each degree into 2 parts: For fo, if ftreight lines be drawne paralleill to the diameter $C \mathcal{D}$, throughthefe 90 , and their fubdiuifions they fhall diuide the perpendicular $\& \mathcal{B}$ vnequally int 90.

And this line A B fo diuided thall be the line of Sines, and mult be transferred into the Sector. The number fet to them are to be 10. 20.30. \& \& . vnto 90 as in the example.

If now in the point D, winto the diameter $C D$, we fhall raife a perpendicular $\mathcal{D} E$. and to it drawe ftreight lines from the center A_{2} through each degree of the quadraut
drant D B thefe itreight lines thalbe fecants, and this perpendicular fodiuided by them thall be the line of Tanco gents, \& mult be transferred vnto the fide of the Sector. The number fet to them, are to be roil 20.30. \&ce as in the example.

If betweene A and D, another ftreight line $G F$, be drawne parallell to D E, it will be diuided by thofe tines from the center in like fort as DE is diuided, and it may frue for a leffer line of T angents, to be fet on che edge of the Sector.

If the compaffes fhall be extended, from C, to each deo gree of the Quadrant, $C \mathcal{B}$; and thofe extents transferred into one lias ($C A$) this line $C A$ fo diuided into 60 (or rather, into $90 . \mathrm{gr}$) thall be a line of Cbords, and may be fet on fome voyd place of the Sectior.

- Thefe lines of Sunes and Tingents, may yet otherwife be transferred into the SeCtor out of the line of Lines, (or rather out of a diagonall Scale equall to the tine of Lines;) by tables of Sinesand Tangents.

If the Sine of 90 gr. being equall to the whole Zine of limes of 100000 parts, the Sine of 30 gr. will be equall to 50000 (halfe the Line oflines;) and the Sine of 45 . gr. Cquall to 707 io parts of the lize of lines, accord to the vfluall table of Sine s.

In like manner the Tangent of 45 g . being equall to the whole Line of lines, the tang. of 4° deg, will be equall to 83910 parts of the Line of lines: and the tang. of 50 degro. equall to II9175, that is, to one Redius (or whole Line) and 19175 parts more of the fame line of tines, according to the old table of T angents.

And (vpon the fame ground) the Secant of 40 gr. will be equall to 13054°, that is, one Radius, and 30540 . parts of the Line of lixes: and the Secant of 50 degr. equall to 15557^{2}, and fo the reft, according to the like Table of Secants.

The Line of CAords mayalfo be divided by help of the 'Table of Sines', and line of lenes. For the double fine of cbord.

As, if the Ark propofed were 60 gr . The halfe of this Ark is 30 .degr. and the fine thereof 50000 , which being doubled make 100000, the whole line of lines, equall to a shord of 60 degr.

So, for the chord of 60 degr. The halfe ark is 45 degres, and the fine thereot 70710. which being doubled, make 1414240. (that is,) one Radius and 41420 parts of the line of lines, equall to the chord of 90 gr . required.

6 To, bew the grousd of the Sector.

LEt A B, A C, reprefent the leggs of the Soctor: then feing thefe two $A B, A C$, are equall, and their fections $A D, A E$, alfo equall, they fhall be cut proportionally: and if we draw the lines EC, DE, they will be parallell by the fecond Pro. 6 lib. of Euclid, and fo the Triangles ABC.ADE, Thalbe equiangle; by reafon of the commonangleat A, and the equall angles at the bafe, and therefore Shall haue the fides proportionall about thofe equall angles, by the 4 Pro. 6 lib. of Euclide

The fide $A D$; fhalbe to the fide $A B$, as the bafis $D E$, vnto the parallell bafis $B C$, and by conuerfion $A B$, hall be vico AD , as $\mathrm{B} C$, vnto DE : and by peru utation A D; Thall be vnto $D E$, as $A B$, to B C. \&c. So that if A De,
be the fourth part of the fide A B, then D E, Thail alfo be the tourth part of his parallell bafis BC. The like realon holdeth in all other fections.

7 To fhes the generall vee of the Sector.

THere may fome cöclufions be wrought by the Sector, euen then when it is Shut, by reafon that the lines are all of one length: but generally the vfe bereof confifts in the folution of the Golden rule, where three lines being giuen of a known denomination, a fourth proportionall is to be found. And this folution is diuerfe in regard both of the lines, and of the entrance into the worke.

The folution in regard of the lines is fometimes fimple, as whenthe worke is begun and ended upon the fame lines. Somerimes it is compound, as when it is begun on one kind oflines, and ended on another. It may be begun vpon the lines of Lives; \& finifhed upon the lines of Superficies. It may begin on the Sines, and end on the Tangents.

The folution in regard of the eatrance into the worke, may be either wi ha parallell or elfe laterall on the fide of the SeCtor, I cal it parallell entrance, or entring with a paral lell, when the two lines of the firft denomination are applied in the parallells, and the third line, and that which is fought for, are on the fide of the Sector. I call it laterall entrance, or entring on the fide of the Sector, when the two lines of the firft d nomination are on the fide of the SeEtor, and the third line and that which is to be found out, doc Itand in the parallells.

As for example, le there be giuen three lines A, B, C, to which I am to find a fourth proportionall. let A, meafured in the line of lines, be $40,{ }^{\circ} \mathrm{B} 50$, and C_{60} and fuppofe the gueftion be this. If 40 Monthes giue so pownds, what Shall' 6 ?. Here are lines of two denominatios, ane of months another of pounds, and the firft with which 1 am to enter mult be that of 40 monthes. If then I would enter with a parallell, firt I take A the line of 40 , and put it ouer as a paralled in 50, reckoned in the line of lines, on either fide of the Sector from the center, fo as it may be the Bafe of an Ifofcheles triangle $B A C$, whofe fide $A B, A C$ are equal to B , the line of the fecond denomination.

Then the Setter being thus opened, I take C the line of 60 , betweene the feetc of the compaffes, and carrying them parallell to B C,I finde them to croffe the lines A.B, A C, on the fide of the Sector in D and E, numbred with 75, wherefore I conclude the line A D, or A E, is the fourth proportionall and the correfpondent number 75 which was required.

D
Buc

But if I would exter on the fide of the Sector, then woind I difpofe the lines of the firlt denomination A and C , in thelime of Lines, on both fides of the Suctor, in A B, A C, $\&$ in A D, A E, foas they fhould all meete in the center A, and then taking B 'the line of the fecond denomnation put it ouer as a parallell in B C, that it may be the Bafis of the Iforcheles triangle B A C, (whore fides A B, A C, are equall to A, the firlt line of the firft denomination,) for fo the SeFtor being thus opened; the o:her parallell from D to E , fhall be the fourth proportionall which was required, and if it be meatured with the other lines, it thal be 75, as before.

In both this manner of operations, the two firt lines do ferue to ope the SeCtor to his due angle, the difference betweene them is efpecially this that in parallell entrance, the two lines of the firft denomination, are placed in the parailells B C, DE, \& inlaterull entrance they are placed on both fides of the Sector, in A B, A D and in A C, A E.

Now in imple folution which is begunand ended, vpon the fame kinde oflines, it is all one which of the two latter lines be put in the fecod or third places. As in our exäple we may fay, as 40 are to 50 , 6060 vito 75 , or elfe as 40 are to 60 , fo 50 vnto 75 . And hence it connth that we may enter both with a parallell, \& on the lides two manner of wayes at either entrance, and fo the moft part of gueftions may be wrought 4 feuerall wayes, th ugh in the propofitions following, I mention onely that which is molt conuenient. If any have not the SelZor, he may make vfe of the former figure, 25 in our example, where we haue 3 numbers giuen (40.50.60.) to finde the fourth Proportionall.

Firft, draw a right line $(A \mathcal{D})$ to reprefentone of the lines of the Sector. Then take out the firft number (40) out of the line of Lines, and pricke it downe from A to B; and on the Center (A_{s}) and Semidiameter ($A B$) defcribe an occult arke of a circle from \mathcal{B} towards C. In like manner, take out (60) the other number, of the firft deno-
minion) and pricke ir downe from \mathcal{A} to D. And on the center $(\mathcal{A}$) and Semidiameter ($A \mathcal{D}$) defcribe a fecond arke of a circle, from \mathcal{D} toward E. That done, take the third number (50) and infcribe it into the firftarke from \mathcal{B} to C;and laying the ruler to the center (A) and the point C, draw the right line ($A C$, out in length, till it cutt the fecond arch in the point E. So the diftance from D to E (taken and meafured in the fame fcale with the third number) will giue the 75 for the fourth proportionall.

Thus much for the generall vfe of the Sebtor, which being confidered and well underfood, there is nothing hard in that which followeth.

CHAP. II.

The rofe of the Scale of Lines

I To fet downe à Line, refermbling any giwen parts or fraction of parts.

THe lines of Lines are diuidd actually into 800 parts. but we haue put onely 10 numbers in them. Thefe we would haue to fignifie either themfelues alone, or ten times themfelues, or an hundred times themfelues, or a rhoufand times themfelues, as the matter fhall require. As ifthe numbers giuen be no more then 10 , then we may thinke the lines onely diuided into 80 parts according to the numberfet to them. If they be more then 10, and not more then 100, then either line fhall containe 100 parts, and the numbers fet by them fhall be in value 10.20 .30 .8 c . as they are diuided actvally. If yet they be more then 100 , then euery part muft be thought to be diuided into 10 , and either line fhall be 1000 paits: and the numbers fet to them fhall be in value 100.200. 300 , and fo forward ftill increafing themfelues by 100 D 2

This

This being prefuppofed, we maq numher the parts and fiaction of parts giuen in the line of lines; and taking out the d ftance with a paire of compaffes, tet it by, tor the line fo takenthall refemblethe number giten.

In his manner may we fet downe a line refenbling: 75, it either we take 75 out of the hundred parts; into. which one of the ine of lises is actually duided; and note it in A , or $7^{\frac{1}{2}}$ of the firit to parts, anduote it in B , or onely $\frac{3}{4}$. of one of thote huadred parts, and note it in C. Ur if this be either to gr at or to imall, we may run a Scale at cleaturt, by opening the compaffe to fome fimall diItance, and running it ten tim s oues, then opening the compaffe to theic ten, run them ouer nine times more, is fer figures to them as in this example, and out of this we may take what parts we will as before.

To this end thaue diuided the tine of inches on the edge of the Sector, fo as one inch containeth 8 parts, a other 9 , anoiher 10 , \&c. according as they are figured, and as they are diftant from the other end of the Sector, that fo We might haue the better eftimate.

> 2 To encreafe a line in a giwes proportion. 3 To dimangh a line ina given proportion.

T4 ke the line giuen with a paire of compaffes, and openth Sector, fo as the feete of the coimpaffes may fand in the poists of the number giuen, then keeping the Sector at this angle, the parallell diftance of the points. of the number seguired, fhall gine the line required.

Let A bealine giuen to be increafed in the proportion of 3 to 5 . Firt 1 take the line A. with the compaffes, and openthe Sector till I may put it ouer in the poynts

$$
\text { The vee of the tives of Lines. } 2 \text { I }
$$

of 3 and 3 , to the paral'ell betweene the poynts of 5 \& 5 , doth gue ne the line \mathcal{B}, which was required.

In like mamer, if \mathcal{B}, be a line giuen to be dminith d in the proportion of s to $3, I$ take the line $B \&$ to it open the Sector in the poynes of 5 , fo the parallell betweene the poynts of ${ }_{3}$, doth gine me the line \boldsymbol{A} which was required.

If this manner of worke doth not ulifice, we may multiplie or diuide the numbers gi en by 2 , or 3 , or $4 . \& \mathrm{c}$. Aud fo worke by their numbers eqummetioplices, as for 3 aind 5 , we may open the Sector in 6 and ro, or elfe in 9 and 15 , or elfe in 12 and 20 , or in 15 and 25 , or in 18 and 30. \&c.

4 To diuide a line into parts ginen.

TAke the line giuen, and open the Sector according to the length of the faid line in the points of the parts, whereinto the line fhould be diuided, then keeping the Sector at this angle the parallell diltance betweene the points of I and 1 thall diuide the line giaen into the parts sequired.

Let AB , be the line given to be diuided into fiue parts, firf I take this line A B, and to it open the Sector in the point of 5 and 5 , fo the parallell betweene the points of I and I, doth giue me the line $A C$, which doth: diuide it into the parts reguired.

Or let the like line AB; be to be diuided into twenty three parts. Firft I take out the line and put it vpon the D 3

Sector in the points of 23 , then may I by the former proi pofition diminifh it in AC, C D, in the proportion of 23, to 10 , and after that diuide the line $A C$ into $10, \& C$, As before.

s To finde aproportion betweene two or more right lines gitex.

TAke the greater line giuen, and according to it open the Sector in the points of 100 and 100 , then take the leffer lines feuerally, \& carry them parallell to the greater, till they ftay in like points, fo the number of points wherein they ftay, hall fhew their proportion vnto 100.

Let the lines giuen be $A B, C D$, firf I take the line $C D$; and to it open the SeCtor in the points of 100, and 100, then keepi g the Seitor at this angle, I enter the 1 ffer line $A B$, parallell to the former, and finde it to cruffe the lines of Lines in the points of 60 . Wherefore the proportion of $A \mathcal{B}$ to $C \mathcal{D}$, is as 60 to 100 .
Or if the line $C D$, be greater then can be put ouer in the poynts of 100 , then I admit the leffer line $A B$, to be $\mathbf{1 0 0}$, and cutting of $C E$ equall to $A B$, I finde the proportion of $C \mathcal{E}_{\text {, wito }} E$ Do be as 100 alinof to 67 ; wherefore this way ýy proportió of $A B$ vnto $C D$, is as 100 vnto almoftr 67
this propofition may alfo not vnfitly be wrought by any other number, that admits feuerall diuifions, and namely, by the numbers of $\sigma 0$. And fo the leffer line will be found to be 36 , which is as before in leffer numbers, as 3 vito 5. It may alfo be wrought without opening the Secter. For if the lines betweene which we feek a proportiou, be applyed to the lines of Lises, (or any other Scale of equall parts)there will be fuch proportion found between
them, as betweene the lines to which they are equall.

6 Twolines being giuen to finde a third

 incontinuall proportion.FIrf place both the lines giuen, on both fides of the Sector from the Center, and marke the termes of of their. extenfion, then take out the fecond line againe, and to it open the Sector, in the termes of the firft line,fo keeping the Sector ar this ángle, the parallell diftance betweene the termes of the fecond line, fhall be the third proportionall.

Lèt

Let the two lines giuen be A B, A C, which I take out and place on both fides of the Sector, fo as they all meete in the center A, let the termes of the firlt line be B and B, the termes of the fecond C and C . Then doe I take our AC the fecond line againe, and to it open the Sector in the termes B B So the parallell betweene \mathbf{C} and C doth giue me the third line in continuall proportion. For as $A \mathcal{B}$ is vnto $C A$, to $B B$, equall to $A C$, is vnto $C C$.

7 Three lines being gisen to finde the fourth indifcontinuall propartion.

HEre the firf line \& the third are to be placed on both fides of the Sector from the center, then take out the feccond line, and to it open the Sector in the termes of the firft line. For fo keeping the Sector at this angle, the parallell diftance betweene the termes of the third line, Shalbe the fourth profortionall.

Let the three lines giuen be A, B, C.

Firft I take out A and C, and place them on bothfides of ithe Sector, in $A B, A C$, and $A D, A E$, laying the beginning of borh lines at the center A, then do I take out B the fecond line, according to it I open the Soctor in B and C,the termes
termes of the firt line: fo the parallill betweene D and $E_{\text {, }}$ doth giue methe fourth proportionall which was required.

As in Arithmetigue; ; fufliceth if the firft and third number giuen be of one denomination, the fecond \& the fourth which is required be of another. For one and the fame denomination is uot required neceffarily in them all. So in Geometrie, it futticeth if the fides A B, A D, refembling the frrt and third lines giuen be meafured in one Scale, and the parallells B C, D E be mealured in another. Wherefore knowing the proportion of A the firf line, and C the third line, by the fift prop.before. Which is here as 8 to $12, \&$ defcé ding in leffer nübersis as 4 to 6 ,or as 2 to 3,or afcending into greacer numbers, as 16 vnto 24 or 18 to 27 , or 20 to 30 , or 30 to 45 , or 40 to 60 \&c. Ifthe Sector be opened in the points of 8 and 8 ,to the quantity of \mathcal{B}, the fecond line giuen, then a parallell becweeene 12 and $\mathrm{I} i$, thall giue D E, the fourth line required. So likewife if is be opened in 4 and 4, then a paraliell betweene 6 and 6 , or if in 16 and 16 , then a parallell betweene 24 and 24 fhall giue the fame D E. And fo in the reft.

s To devide a line in fuch fort as anot ber line is before disided.

FIrft takeout the line giuen, which is already diuided, and laying it on both fids of the Sector from the center; thark how farre it extendeth. Then take out the lecond line which is to be diuided, and to it open the Sectior inthe termesof the firft line. This done, take out the parts of the firt line, and place them allo on the fame fide of the Sector from the center.For the parallells take: in the termes of thefe parts, fhal be the correfondent parts in the line which is to ve diu ded

Iete A, be a line diuided in D and E, and $B C$, the line which I am to diuide in fuch fort, as $A \mathcal{B}$ is diuided.

Fift I take out the line $A B$, and place it on the line of Lines in $A B, A C$, both from the center A, then take I out the fecond $B C$, and oo it open the Sector in \mathcal{B} and C, the angle, I take out $A D$ and $A E$, the parts of the firft line $A B$, and place them alfo on both the fides of the Sector $A \mathcal{D}$, $A E$, fo the parallell $D D$, giueth me $\mathcal{B} F$, and the parallell E, \mathcal{E}, giseth me $B \mathcal{G}$, and now the line $B C$, is diuided, in F \& G as is the otherline $A \mathrm{~B}_{2}$ inD and E, which is that which was

required
If the line $A B$, were longer then one of the fides of the Ruler, then fhould I finde what proportion it hath to his parts $\mathcal{A} D, \mathcal{A} E$, and that knowne I may worke as before in the former propofition.

9 Two numbers being given to finde a third in continuall proportion.

FIrft reckon the two numbers giuen on both fides of the lines of Lines from the center, and marke the termes to which either of them extendeth, then take out a line refembling the fecond number againe, and to it open the Sector in the termes of the firft number, for fo keeping the Sectior at this angle, the parallell diftance betweene the termes of the fecond laterall number, being meafured in the fame Scale

Therefe of the lines of Lixes.

Scale, from whence his parallell was taken, thall give the third number proportionall.

Let the two numbers giuen be 18,24, thefe being refembled in lines, the worke will be in a man:er all one, with that in the fixt Prop: and fo the third proportionall number will be found to be 32 .

10. Tbree numbers being ginen to find a forrth in difcostisuall propertion.

THe folution of this propofition, is in a manner all one with that before in the feuenth Prop. onely there may be fome dificulty in placing of the nu nbers. To avoyd this, we muft remember that three numbers being giuen. the queftion is annexed but to one, and this mult allwayes be placed in the third place, that which agrees with this third number in dinomination. halbe the firft number; and that which remaineth the fecond number. This being confidered, reckon the firf, and third numbers, which are of the firft denomination on both fides of the lines of Lines from the center, and marke the ternes to which either of them extendeth, then take out a line refenbling the fecond number, and to it open the SeCtor in the termes of the firtt number, for fo keeping the Sector at this angle, the parallell diftance btweene the termes of the third laterall number, being meafured in the fame Scale from whence his parallell w is taken, fhall give the fourth number proportionall.

As if a quefton were propoled in this manner 10 yards cof 8 P , how many yards may we buy for 12 E ? heere the gueftion is annexed to 12 ; and therefore it thall be the third number, and becaufe 8 is of the fame denomination, it fhall be the firt number, then ro remaining, it muft be the fecond number, fo will they ftand in this order, 8, 10, $\mathbf{I 2}$. Thefe be. ing refembled in lines, the worke will be in a manner the fame, with that in the feventh Prop, and the fourtb pro. portionall number will be found to be 15 . For as 8 are to So, fo 22 uato 150

And this holdeth indir ct proportion, where, as the firf mumber is to the fecond, fo the third to the fourth. So that if the third number be greater then the firft, the fourth will be greater then the fecond, or if the third number be leffe thea the firf, the fourth will be lelfe then the fecond; but in reciprocall proportion, commonly called the Backe rale, where by how much the firt number is greater then the third, fo much the fecond will be leffe then the fourth, or by how much the firt number is leffe then the third, fo much the fecond will begreater then the fourth. The manner of working mult be contrary, that is; the Sector is to be. opened in the term:s of the third number, and the parallell refembling the number required, is to be found betweene the termes of the firt number, the reftmay be obferued as beforé, as for example.

If trelue men would raife a frame in tes dayes, in bow mang dayes would eight men raife the fame frame? Here, becaufe the. fewer men would require longer, time, thoiggh the numbers ba 12, 10, 8, yet the fourth proportionall mill be found to be is.

So if 60 yards, of three quarters of a yard in bredth, moonla bang round about a roome, © it were required to know boun manyyards of balfe a yardin bredth, would ferne for the fame roone. The fourth proportionall mould be found to be 90.

So if to msake a footeSuperficiall, 12 inches in bredth doe require. 12 inches in length, o- the bredit being 16 inches, it were required to know the length. Here, becaufe the mare breadeh, tbe leffo length, the fourth proportionall will be found to be 9 .

So.if to make a Solid foote, a bafe of 144 inches. require 12 inches in bight, and a bafo ginen being 216 inche s, it weere required to know bow many inches it fall base in hight. The fourth proportionall mould be fornd to be 8.

This laft propofition of findingt a fourth proportionall number

The $v f$ of tbelines of Superficies.

number, may be wrought alfo by the linee of Superfocioce, anad by the lines of Solids

CHAP. IHI.

The rofe of the lines of Supenficies.

1. To findec proportion betmecne two or mare like Superficies.

TAke one of the fides of the greater Superficies giuen, and according to it open the Sector in the points of 100 and 100 , in the lines of Superficies, then take the like fides of the leffer Superjficies feuerally, and carry them parallell to the tormer, till they ftay in like points, fo the number of points wherein they ftay, fiall fhew their proportion vinto 100 .

Iet A and B, be the fides of like Superficies, as the fides of two fquares, or the diameters oftiwo circles, firft I take the fide A, and to it open the Sector in the points of 100 , then keeping the Sector to this angle, I enter the leffer fide B, parallell to the former, and finde it to croffe the lines of Superfivies inthe points of 40 , wherefore the proportion of the Superficies, whofe fide is A, to that, whofe fide is B, is as 100 . vnto 40 , which is in leffer number; as 5 vnro 2.

This propofition might haue beene wrought by 60 , or any other number that admits feuerall diuifions. It may alfo be wrought without opening the Sectior, for if the fides of the Superficies giuen, be applied to the lines of Superficies beginning alwayes atthe center of the Sector, there will be fuch proportion found betweene them, as berweene the E3 3 number number of parts whereon they fall.
2. To augment a Superficies in agisen Proportion.

3 To diminilh. Superficies in agiuen Proportion.

TAke the fide of the Superficies, and to it open the. Sector in the points of the numbers giaen; then keeping the Secter at that angle, the parallell diftance between the points of the number required, thall giue the like fide of the $\mathcal{S}^{\text {opper}}$ ficies required.

Let "A be the fide of a Square to beaugmented in the proportion of 2 to 5 . Firft I take the fide A, and put it ouer in the liges of S uperficies, in 2 and 2 ; fo the parallell between 5 and 5 , doth giue me the fide B, on which if I hould make a Square, it would haue fuch proportion to the fquare of $A_{\text {, }}$ as 5 vito 2 .
In like manuer if B were the femidia reter of a circle to be diminifhed in the proportion of 5 unto $2, I$ would take out B, and put it ouer in the lines of Superficies, in \mathbf{s} and 5 ; fo the parallell betweene 2 and 2 would giae me A; on which Semidiameter if I hould make a circle, it would be leffe then the circle madeupor the Semidiameter B, in fuch proportion as 2 is leffecthen 5 .

For varietie of worke the like caution may be here obferved to that which we gate in the third Proportion of Lines.

> 4 To adde one like Saperficies to another.
> s. To fubtran one tike Superficies frans another.

FIrft, the proportion betweene like fides of the Superfisies ginen, is to be found by the firft Prop, of Superficies, then adde or fubtract the numbers of thofe proportions,
aind accordiggly, augment or: diminifh by the former Propofition.

As if A and \mathcal{B} were the fide of two Squares, and it wert required to make a third Square equall to them both. Firtt the proportion betweene the Squares of A and B, would be found to be as 100 unto 40 , or inthe leffer numbers as 5 to 2 ; then becaufe 5 and 2 added doe make 7 , T augment the fide A in the proportion of 5 to 7 , and produce the fide C, on which if I make a gquare, it will be equall to both the fquares of A and B, which was required.
In like manner \mathcal{A} and \mathcal{B} being the fides of two Squares, if it were required to fubtract the fquare of \mathcal{B} out of the rquare of A, and to make a fquare equall to the remainder, there the proportion being as 5 to 2 , becaufe 2 taken out of s, the remainder is 3 . I would diminifh the fide A in the proportion of 5 to 3 , and 50 " 1 hould produce the fide D, on which if 1 make a fquare, it will be equal to the remainder when the fquare of B is taken out of the fquare of A, that is, the two fquares made vpon \mathcal{B} \& D, thall be equall to the firt fquare made vpon the fide e 1 .

6 To finde a meane proportionall betwecise

two lines given.

FIrt find what proportion is betweene the lines, giuen; as they are lines, by the fifth Prop. of Limes, ther open the Sector in the lines of Superfcies, according to his number, to the quantitie of the one, and a parallelili taken betweene the point of the number belonging to the other line fhall be the meane proportionall.

Let the lines given be ef and C. The propontion tretwe ene them as they are lines willbe found by the fiftopro pofit. of lines to beas 4 to 9. Wherefore I take the line C, and put it over to the lines of Superficies betweene 9 and 9 , and keeping the Sector at this angle, his parallell between 4 and 4 doth give me B for the meane proportionall. Then for proofe ot the operation I may take thisline B, and put it over betweene9 and, 9 : 50 his parallell betweene $4 \& 4$, thall give me the fuft line A. Whereby it is plaine that thefe three lines doe hold in continuall proportion; and therefore, B is a meane proportionall betwecene A and C the extremes given.

Vpon the finding out of this meane proportion depend many Corollaties, as

to make a Square equallto a Superficies ginex.

HiF the Superficies given be a retangle porallellogram, ${ }^{\text {a }}$ meane prop ortionall betweene the two vnequall fides hall be the fide of his equall fquare.

Ifit hall be atriangle, a meane proportion betweene the perpendicular and halte the bare thall be the fide of his equall Iquare. If it liall be any other right-lined figure, it may be refolued iuto triangles, and fo a fide of a fquare found equall to euery trianglc; and thefe being reduced into one equall fquare, it thall be equall to the whole right-lined figure giuen.

Tojinde aproportion betmeene superficies, though they be anlike pne to theother.

IF to every Superficies we find the fide of his equall iguare, the proportion betweene thefe fquares, fhall be the proportion betweene the Superfcies given.

Let the Superficies given, be the oblonge A, and the triangle \mathcal{B}. Firft between the vnequall fides of A, I finde a meane proportionall, and note it in C : this is the fide of a fquare equall unco A. Then betweene the perpendicular of B , and halfe his bafe, I finde a meane proportionall, and note it in B : this is the fide of a Square equall to B : but the proportion between the fquares of C and B, will be found by the firf Prop. of Superficies to be as 5 to $4:$ and therefore this is the proportion between thofe given S uperficies.

To make a Superficies like to one Superficies and equall to another.
Et the one Superficies given be the triangle A, and the $0=$
:her the Rhomboides Bjand let it be required to make an.

F a meane proportionall, and note it in B , as the fide of his e quall fquare : then betweene the perpendicular of the triangle A, and halfe his bafe, I find a meane proportionall, and note it in A, as the fide of his equall fquare. Wherefore now as the fide B is to the fide A, fo hall the fides of the Rhomboides giuen be to C and \mathcal{D}, the fides of the Rhomboides required, \& his perpendicular alfo to E, the perpendicular required.

Hauing the fides and the perpendicular, I may frame the R bomboides up, and it will be equall to the triangle \mathcal{A}.

If the Superficies giuen had been any other right-lincd figures, they might haue been refolved into triangles, and then brought into fquares as before.

Many fuch Corollaries might haue been annexed, but the meanes of finding a meane proportionall being knowne, they all follow of themfelues.

7. To finde a meane proportionall betweene two. numbers ginen.

Firt reckon thetwo numbers giuen on both fides of the
Lines of Superficies, from the center, and mark the termes. whereunto they extend; then take a line out of the line of Lines, or any other fale of equall parts. refernbling one of thofe numbers giuen, and fut it ouer in the termes of his like number in the lines of Superficies; for fo keeping the Sector at this angle, the parallell taken from the rermes of the other number and meafured in the fame fale from which the other parallell was taken, thall here fhew the meane pro.portionall which was required.

Let the numbers giuen be 4 and 9 . If I fhall take the line 1) in the diagram of the fixt Prop. refembling 4 in a fcale of equall parts, and to it open the SeCtor in the termes of 4 and 4 , in the lines of Superficies, his parallcll betweene 9 and 9 doth giue me B for the meane proportionall. And: this meafured in the fcale of equall parts doth extend to σ,

Which is the me ne proportionall number between 4 and 9. Foras 4 to 6 , fo 6 to 9.
In like manner if itakethe line C, refembling 9 in a fcale of equall parts, and to it open the Sector in the termes of 9 and 9 , in the lines of Skperfcies, his parallell bet ween 4 and 4 doth giue me the fame line B, which will proue to be σ, as before, ifir be meafured in the fame fcale whence C was taken.

For, the figures $1,2,3,4, \& \mathrm{c}$. heere fet downe upon the line, do fomenme figuife themfelues alone: fornetime, 10 , $20,30,40 \& \mathrm{c}$. fometime $100,200,300,400 \mathrm{\& c}$. and fo forward as the matter hall require. The firft figure of ewery number is alway that which is here fet down: the reft muff be fupplied according to the nature of the queftion.

If you fuppole pricks inder the number given (as in arith: meticall extraction) and the laft prick to the left hand chall fall under the laft fig. (which will beas oft as there be odd figures) the unite will be beft placed at 1 , in the middle of the line; fo the root, \& the fquare will both fall forward, toward the end of the line. But, if the laft pricke hall fal under the laft figure but one (which will be as oft as there be cuen Figures) then, the unite may be placed at I in the beginning of the line, and the fquare in the fecond length: or the unite may be placed at 10 , in the end of the line, lo the root and the fquare will both fall backward, toward the middle of the line.

8 To find the fquare roote of a number.

9 The roote being gimess to find the fquare number of that roote.

IN the extraction of a fquare roote it is ufuall to fet pricks under the firft figure, the third, the fifth, the feventh, and fo froward, beginnug from the right hand toward the left, and as many pricks as fall to be under the fquare number given, fo many figures fhall be in the roote : fo that if the number given belffe then 100, the roote thatl be onely of one

$$
\mathbb{F}
$$

sgure;
figure; ifleffe then 10000, it fhall be but two figures; if leffe then $\mathbf{1 0 0 0 0 0 0}$, it fhall be three figures, \&ic.

Thereupon the lines of Superficies are divided firftinto an hundred parts, and. if the numbergiven be greater then 100 ; the firt divifion (which before did fignifie only one) muft fignifie 100 , and the whole line Ahall be 10000 parts: if yet the number given be greater then 10000, the firlt divifion muft now fignifie 10000 , and the whole line be efteemed at 1000000 parts: a dif this be too little to expreffe the numbergiven, as of as we have recourfe to the beginning, the whole line fhall increafe it felfe an hundred times.

By, thefe meanes if the laft pricke to the left hand Miall. fall under the latt figure, which will beas oft as there be odde figures, the number given thall fall out betweene the center of the Sector and the tenth divifion: but if the laft prick fhall fall underthe laft figure but one, which will be as oft as there be even figures, then the number given hall fall out pbetweene the tenth divifion and the end of the SeCtor.

This being confidered, when a number is given and the fquare rooie is required, take a paire of compaftes and fetting one foote in the cenrer, extend the other to the terme of the number given in one of the lines of Superficies; for this diftance applied to one of the Lines of Lines, thall Thew what the Square root is, without opening the Sector.

Thus 36 doth give a root of 6 :and 360 , a root of (almoft) 19: and 3600, a root of 60 : and 36000, a root of $189 \& c$.

In like manner, the neereft root of 725 is here found to be (about) 27: the neereft root of 7250 , about 85 : the neeref: of 72500 , about 269 : and the neereft root of 725000 , about 851: And fo in the ref.

On the contrary, a number giuen may be fquared, if firft we extend the compaffes to the number given in the lines of Lines, and then apply the diftance to the Lixes of Superficies, as may appeare by the former examples.

10 Three sumbers being givens to find the fourth in a duplicated proportion.

IT is paine by the 19 and 20 Prop. 6 Lib. of Euclid. that like Superficies do hold in a duplicated proportion of their homologall fides, whereupon a queftion being moved concerning Superficies and their fides. It is uftuall in Arithmeticke that the proportion be firft duplicated before the queftion be refolved, which is not neceffarie in the ufe of the Sector, onely the numbers which doe fignifie Superficies muft be reckoned in the lines of Superficies', and thiey which fignifie the fides of Superficies, in the lines of Lines, atier this manner.

If a quettion be made concerning a Superficies, the two numbers of the firft denomination mult be reckoned in the lines of Lines, and the Sector opened in the termes of the firft number to the quantitie. of a line out of the fcale of Superficies refembling the fecond number; fo his parallells taken betweene the termes of the third number, being meafured in the fame fcalc of Superficies, fhall give the Superficiall nume ber which was required.

As if a Square, whofe fide is fortie perches in length, fhall containe ten acres in the Superfcies, and it be required to know how many acres the Square thould containe, whofe fide is fixtie perches.

Here If I tooke 10 ort of the line of Superficis, and put it overin 40 in the lines of Lines, his parallel between 60 and

3気

The efe of the line of Superficies.

60 meafured in the line of Suserficies, would be $22 \frac{1}{2}$; and fuch is the number of acrees required. For Squares doe hold in a duplicated proportion of their fides; wherefore when the proportion of cheir fides is as 4 to 6 , and 4 multiplied into 4 become 16 , and 6 maltiplied into 6 become 36, the proportion of their tquares hall be as 16 to 36 ; and fuch is the proportion of ro to $22 \cdot \frac{1}{2}$.

If a field meafured with a fatute perch of $16 \frac{\pi}{2}$ foote, fhall containe 288 acres, and it be required to know how many acres it would containe if it were meafured with a woodland perch of is foote.

Here tecaufe the proportion is reciprocall, if itooke 288 out of the line of Superficies, and put it ouer in 18 , in the lines of Lines, his parallell betweene 16 and $16 \frac{1}{2}$ meafared in the line of Superficies, would be 242; and fuchis the number of acres required.
For feeing the proportion of the fides is as $16 \frac{1}{2}$ to 18 , or in leffer numbers as 11 to 12 , and that in multiplied into 15 become 12 I , and 12 into 12 become 144 , the proportion of thefe Superficies chall be as 121 to 144, and fo have 288 to 242, in reciprocall proportion.

On the contrary, if a queftion be propofed concenning the fide of a Saperficies, the two numbers of the firf denos mination murt be reckoned ia the lines of Szperficies, and the Seltor opened in the termes of the firft number, to the quantitie of a line, out of the line of Lines or fome Scale of equall parts, refembling the fecond number; fo his parallell taken betweene the termes of the third number being neafured in the fame fcale with the fecond number, hall give the fourth number required.

As if a field contained 288 acres when it was meafured with a flatute perch of $16 \frac{1}{2}$, and being mexafured with anothe perch, was found to containe 24% acres, it were required to know what was the length of the perch with which it was fo mearured.

Here becaufe the proportion is reciprocall, if I tooke $16 \frac{1}{2}$ out of the line of Lines, and put it ouer in 242 in the lines
of Superficies, bis parallell betwene: 288 and 288 , being meafured in the line of Lines, would be $18 ; \&$ fuch is the length of the perch in feere whereby the field was latt meafured.

For feeing the proportion of the acres is as 288 unto $\mathbf{2 4 2}$, or in the leaft numberas 144 to 121 , and that the roote of 144 is 12 , and the root of 121 is 11 , the proportion of roots and confequently of the perches hhall be as 12 to IT , and fo are $16 \frac{1}{2}$ to 18 , in reciprocall proportion.

If 360 men were to be fet in forme of a long fquare, whofe fides fhall haue the proportion of 5 to 8 ; and it were required to know the number of men to be placed in front and file: if the fides were only s and 8, there fhould be but 40 men; but there are 360 : therefore, working as before, I finde that.

As 40 to the fquare of 50 fo 360 to the fquare of 150

As 40 to the fquare of 8 ,
fo 360 to the quare of 24 .
and fo 15 and 24 are the fides required.
If 1000 men were lodged in a fquare ground, whofe fide were 60 paces, and it were required to know the fide of the fquare wherein 5000 might be fo lodged, here working as before, I fould finde that

As 1000 are to the fquare of 60 :
fo 5000 to the fguare of 134
Aind fuch very neare is the number of paces required.

CHAP. IV.

The rofe of the lines of Solids.

To finde a proportion betweene two or more like Solidso.

IN the Sphere, in regular, parallell, and other like bodies, whofefides next the equall angles are proportionall, the worke.
worke is in a manner the fant, with that in the firf Prop. of Superficies, but that it is wrought on other lines.

Take one of the fides of the greater Solid, \& according to it open the Sector in the points of a 1000 \& 1000 , in the lines of Solids, then take the like fides of the leffer Solids feverally, and carry them parallell to the former, till they fay in like points, fo the number of points wherein they ftay, fhall Shew their proportion to 1000 .

Let A and \mathcal{B}, be the like fides of like Solids, either the diameters, or femidiameters of two fpheres, or the fides of two cubes, or other like. Firft I take the fide A, and to it open the Sector in the points of 1000 , then keeping the Sector at this angle, I enter the leffer fide \mathcal{B}, parallell to the former; and finde it to croffe the line of Solids in the points of 400, and fuch is the proportion betweene the Solids required which in leffer number is as ρ to 2 .

This propofition mighr have been wrought by 60 , or any other number that admits feverall divifions.

It may allo be wrought without opening the Sector, for if the fides of the Solids given, be applied to the lines of Solids, begining all wayes at the cenrer of the Seltor, there will be fuch proportion betweene them, as betweene the numbers of parts whereon they fall.

> 2 To angment a Solidin a given proportios.
> 3 To diminifh a Solidin a given proportions.

TAke the fide of the Solid given, and to it open the Sector, in the points of the number given: then keeping the Sector at that angle, the parallell diftance betweene the points of the number required, thall giae the like fide of the Solid requyred.

If it be a parallellopipedon, or fome irregular Solid, the otherlike fides may be found out in the fame manner, and with therethe Solids required, may be made up with the fame angles,
B
Let A be the fide of a cube, to be augmented in the proportion of 2 to 3. Firft I take the fide A, and put it over in the lines of Solids in 2 and 2 , fo the parallell betweene 3 and 3, doth give me the fide B, on which if I make a cube, it will have fuch proportion to the cube of A, as 3 to 2 .

In like manner, if B were the diameter of a Sphere; to be diminifhed in the proportion of 3 to 2 . I would take out B, and pir it over in the lines of Solids, in 3 and 3, fo the parallell betweene 2 and 2 , would give me A : to which diameter if I fhould make a Sphere, it would be leffe then the Sphere, whofe diameter is B, infuch proportion as 2 is leffe then. $3 \cdot$

Here alfo for variety of worke, may the like caution be obferved to that which we gave in the third Brop. of Lines.

> 4 To adde one like Solid to anothar.
> s To fubtraCZ one like Solid from another.

FIrft the proportion betweene the fides of the like Solids given, is to be found by the firft Prop. of Solids : then adde or fubtract thofe proportions, and accordingly augment or diminih by the former Prop.

As if A and B where the fides of two cubes, and it were requined co make a third cube equall to them both: firft the propertion betweene the fides A and B, would be found to be as 100 to 40 , or inleffer termes as s to 2 . Then becaufe s and 2 being added do make $7, I$ augment the fide \mathscr{A} in the proportion of 5 io 7 , and produce the fide C, on which if nake a cub", ic will be equail to borh the cubes of A and B, which was required.

In like maner \mathcal{A} and \mathcal{B} being the fides of two cubes, if it were required to fubtract the cube of B out of the cube of A, and to make a cabe equall to the remainder. Here the proportion being as ρ to 2 , becaufe 2 taken out of 5 ; the remain der is 3 , I hould diminifh the fide A in the proportion of 5 to 2 , and fo I hould have the fide D, on which if I make a cube, it will be equall to the remainder when the cube of B is taken out of the cube of A, that is the two cubes made upon B and D, fhall be equall to the firft cube made upon the fide A.

6 To find two meane proportionall lines betweene two extrense lines given.

FIrft I find what proportion is betweene the two extreme lines givenas they are lines, by the fifth Prop: of Lines, then open the Sector in the lines of Solids, to the quanticie of the former extreme, and a parallell betweene the points of the number belonging to the other extreame, fhall be that meane profortionall w hich is next the former extreme: This done, open the Sector againe to this meane proportionall in the points of the former extreme, and the parallell diftance betweene the points of the latter extreme, fhall be the other meane proportionall required.

Let the two extrem: lines given be A and D, the proportion betweene them, as they are lines, will be found to be as 27 to 8 . Wherefore 1 take the line A, and put it over in the hines of Solids between: 27 and 27 , and keeping the Stetor at this angle, his parallell berweene 8 and 8 ; doth give me B, the meane proportionall nex: unto A. Then pur I over this line B, betweene the aforefaid 27 and 27 . and his parallell betweene 8 and 8 do:h give me the line c, the other mane proportionall which was required./

Againe, for proofe of the operation I put over thiis line C in the aforefaid 27 and 27, and his parallell betweene 8 und 8 doth give m the very line D : whereby it is plain: that thefe foure lines do hoid in continuall proportion; and fo B and C are found to be the meane proportionals betweene A and. D, the extremes given.

> 7 To find two mene propartionall namiors. betweentwoextreme numbers given.

FIrf recion the numbers given on both fides of the lines. of Solids, beginning from the center, and marking the, termes whereto they extend: then take a line out of the line of Lines, or any other fcale of equall parts refembling the for-: mer of thofe numbers, and putic over in the lines of Solids, betweene the points of his like number, and a parallell betweene the points belonging to the other extreme, meafured. in the fcale from whence the other parallell was taken, fhall give that meane proportionall number which is next the former extreme. This done open the Sector againe to this. meane proportionall in the points of the former extreme, and the parallell diftance betweene the points of the latter extreme, meafured in the fame fcale as before, fhall there Shew the other meane proportionall required.

The reve of the line of Solids.

Let the two extreame numbers given be 27 and 8 ; if 1 Mall take the line A, refembling 27 ina fcale of equall parts, and to it open the Sector in 27 and 27, in the line of Solids, his parallell berweene 8 and 8 doth give me B for his next meane proportionall, and this mealured in the former fcale doth extend to 18 . Then put I over this line B between the aforetaid 27 and 27 , and his parallell between 8 and 8 doth give me C for the other meane proportionall, and this meafured in the former fcale doth extend to 12. Againe, for proofe of my worke, I put over this line C berweene 27 and 37, as betore, and his parallell betweene 8 and 8 doth give me D, which meafured in the former fcale dorh extend to 8 , which was the latter extreame number given; whereby it is plaine that thefe foure numbers do hold in continuall proportion : and therefore 18 and 12 are meane proportionalls betweene 27 and 8 , which was required.

If you fuppofe pricks under the number given as in arithmeticall extraction and that laft pick to the left hand thall fall under the laft figure, asin 1728 , the unite will be lett placed at 1 , in the middle of the line and the Root fquare and cube will all fall forward tow ard the end of the line.

If the laft pricke fhall fall under the laft figure but one, as in 17280 ; the unite may be placed at 1 , in the beginning of the line, and the cube in the fecond length: or the unite may be placed at 10 , in the end of the line, and the cute in the firtt length.

Bat if the laft prick hall fall on the laft figure but two, as in 172800 ; then, place the unite alwayes at 10 , in the end of the line: fo, the Root fquare and cube will all fall bacward and be found in the fecond length.

8 To find the cubique roote of a number.
9 The roote being given io finde the cube number of that roote.

IN the extraction of a cubique root, it is ufuall to fet pricks under the firft figure, the fourth, the feventh, and tenth, and

The ve of the line of Solids.

and fo forward, omitting two, and pricking the third from the right hane toward the left; and as many pricksas tall to be under the cubique number, fo many figures hall be in the roote. So that if the number given be leffe then 1000 , the roote fhall be only of one figure; if leffe then 1000000 , it Thall bebut of two figures; if above thefe, and leffe them 100000000 , it thall be but thee figures; \&c. whereupon thelines of Solids are divided, firftinto rooo, parts, and if the numbers given be greater then 1000 , the firt divifion(which before did fignifie onely one) mult fignifie $\mathbf{1 0 0 0}$, and the whole line fhall be 1000000 : if yet the number given be grearerthen 1000000 , the firft divifion mult now fignifie 1000000 , and the whole line be efteemed at 1000000000 parts, and if thefe be to little to expreffe the numbers given, as oft as we haverccourfe to the beginning, the whole line thall encrea'e it felfe a thoufanp times.

By thefe meanes, if the lalt pricke, to the left hand, fhall fall under the laft figure, the number given fhall be reckoned at the beginning of the lines of Solids from 1 to 10 , and the firtt figure of the roote fhall be alwayes either 1 , or 2 . If the laft pricke fhall fall under the laft figure but one, then the number given fhall be reckoned in the middle of the line of Solids, between 10 and 100 , and the firft figure of the roote Shall be alwayes either 2 , or 3 , or 4 . But if the lalt pricke fliall fall under the laft figure but two, then the number given, hall be reckoned at the end of the line of Solids, betweene 100 , and 1000.

This being confidered when a number is given, and the cubique rocte required: Set one foote of the compaffes in the center of the Sector, extend the other in the line of Solids to the points of the number given: for this diftance applied to one of the lines of Lines, hall fhew what the cubigue root is, without opening the Sector.

> So the neereft roote of 8490000 , is about 204.
> The neereft roote of 84900000 , is about 439.
> The neereft roote of 849000000 , is about 947 .

I On the contrary, a number may be cubed, if firt we cxtend the compaffes to the number given, in the line of Eines, and thenapply the diftance to the lines of Soluds; as. may appeare by the former examples.

10 Thrce numbers bieng given to finde a fourtbin a triplicated proportion.

AS like Superficies doe hold in a duplicated proportion, fo like folids in a triplicated proportion of their homologall fides : and therefore the fa ne worke is to be obferved: here on the lines of Solids, as before in the lines of Superfi: cies; as may appeare by thefe two examples.

- If a cube whofe fide is 4 inches, thall be 7 pound weight, and if it be required to know the weight of a cube who'e: fide is 7 inches; here the proportion would be,
$\therefore \quad$ As 4 are to a cube of 70 . fo 7 to a cubs of $37^{\frac{1}{2}}$

And if I tooke 7 out of the lines of Solids, and pat it over in 4 and 4 , in the lines of Lines, his parallell between 7 and 7 meafured in the lines of Solids, would be $37 \frac{1}{2}$; and fuch is the weight reguired:

If a biller of 27 pound weight haue a diamiter of 6 inches, and it be required to know the diamiter of the like bullet, whore weight is 125 pounds; here the proportion would be,

As the cubique root of 27 is unto 6 : So the cubique root of $1: 25$ is unto 10 .

The reve of the line of Superficies:
And if I tooke 6 out of the line of Lises, and put it over in 27 and 27 of the lines of Solids, his parallell betweene 125 and 125 meafured in the line of Lines, would be IO; and fuch is the length of the diameter reguired.

The end of the firf Booke.

THE
 SECOND BOOKE OF

噱

THE SECTOR

Containing the vfe of the Circular

 Lines．Of the nature of Sines，Chords，Tangents and Secants，fit to be knowne before band in reference toright－line Triangles．
TN the Canon of Triangles，a circle is commonly divided into 3^{60} degrees，each degree into 60 minutes，each mise outc into $60 \cdot j$ Ceqoinds，

A quadrant is an arke of 90 gr .
The menfure of an angle is the arke of a circle, defcribed out of the angular point, intercepred betweene the fides fufe ficiently produced.

So the meafure of right angle is alwayes an arke of 90 gr. and in this example thie meafure of the angle B A D is the arke $B C$ of $40 \mathrm{gr}^{\prime}$ the mealure of the angle $B A G$, is the are B F of 50 gr .
The complement of an arke or of an angle doth commonly fignifie the arke which the given arke doth want of 90 gr: and fo the arke B F is the cormplement of the arke B. C_{3}; $\&$ the angle B A F, whofe meafure is B Fis the complemene of the angle $B A C$; and on the contrary.?

The complement of an arkeor angle in regard of a femicircle, is that arke which the given arke wanterh to made up 180 gr : and forthe angle EA H is the complement of the angle E A F , as the arke EH is the complement of the arke FE, in which the arke CE is the exceffe aboue the qua. drant.

The proportions which thefe arkes foeing the meafures of angles) have to the fides of a triangle, cannot be certaine, umleffe that which is crooked be brought to a ftraight line; and that may be done by the application of Chords, Rigbe Sines, verfed Sines, Tangents and Secamts, to the femidiameter of a circle.

A Chorde is a right line fubtending an arke:. fo B E is the chord of the arke BCE, and BF a chorde of the arke B F.

Aright Sine is halfe the chorde of the double arke, viz. the xightline which falleth perpendicularly from the one extreme of the givenarke, vpon the diameter drawne to the other extreme of the faid arke.
So if the given arke be B C, or the given angle be B A C, let the diamerer be drawne through the center A unto C_{5}. and a perpendicular BD be let downe from the extreme $\mathrm{B}_{\text {, }}$ upon A C; this perpendicular B D thall be the right fire. both of the arke BC, and alfo of the angle BAC: and it is

- Of the inature of iS Sics a

alfo the halfe of the chord B E, fubtending the arke BC E. which is double to the given arke B U. In like manner, the femidiameter $F A$, is the right fine of the arke F Cand of the righrangle $F A C$; for it falleth perpendacularly upon $A C$, and it is rhe halfe of the chord $\mathrm{F}^{\mathrm{H}} \mathrm{H}$,

This whole Sine of 90 gr . is heteafter called Raditus; but the other Sines take their denomination from the degrees and minutes of their arks.

Sinus ver (us, the ver fed fone is a fegment of the diameter, in: tercepted betweene the right $\sqrt{2}$ e of the fame arke, and the circumference of the circle. So D C is the verfed jine of the arke C B, and G F the verjed sixe of the arke B F , and G H the verfed fine of the arke B.H.

A Tangent is a right line perpendicular to the diameter, drawne by the one extreme of the givenarke, and terminated by the fecant drawne from the center through the o: sher extreme of the faid arke.

A Secant is a right line drawne from the center, through one extreme of thegiven arke, till it meete with the tangent raifed from the diameter at the other extreme of the faid arke.

Soifthe given arke be CE , orthe given angle be $\mathrm{C} \wedge \mathrm{E}_{\mathrm{j}}$, let the diameter be drawne through the center A to C, and in Cto AC, be raifed a perpendicular CI. Then let another line bedrawne from the center A through E , till it meet with the perpendicular CI in I; the line CI is a Tasm gent, and A 1 is the Scraxt both of the arke C E, and of the angle C AE.

Of the generall ofe of Sines and Tangents.

1 The Radius being knowne tofind the right ${ }^{5}$ ne of any arke or angle.

TF the Radius of the circte given be equall to the faterall HRadius, that is, to the whofe line of Sixes on the Settor, there needs no farther worke, but to take the other fiates alfo out of the fide of the Settor. Buaifit be either greater or leffer, then let it be madea parallell Radius, by applying it ouer in the lines of Sines, becweene 90 and 90 ; Fo the paralletl- taken from' che like laterall finies, thatll be the five required.
Asif the giver Radius be $A C$, and it were required to find the fine of $5^{\circ} \mathrm{gr}$ \& his complement agreeable to that Radiuso,

Let $\mathcal{A} B, A B$ reprefent the lines of fines on the Sector, and Ift $B B$, the diftance betweenc 90 and 90 , be equall to the giver

Given radius $A C$. Here the lines $A 40, \mathcal{A} 5_{5}, A 90$, miay be called the laterall ines of $40,50, \& 20$; in regard of their place on the fide of th: Sector. The lines betweene 40 and 40, betweene 50 and 50 , betweene 90 and 90 ; may be called the parallell jnes of 40,50 , and 90°;in regard they are paallell one to the other. The whole fine of $90 \mathcal{G r}$. here ftanding for the fe : idiameter of the circle, may be called the Radius. And therefore if $A \cdot C$ be pus over in the line of Sines ian 90 and 90 and fo made a parallell radius, his parallell fine berweene 50 and so, hall be B D, the fine of 50 required. And becaufe so taken out of 90 , the complement is 40 ;his parallell jines beo. tweenc 40 and 40 , Thall be $B G$, the fine of the complemens: which was required.

2 Theright fine of any arke being given. to find the Radius.

TVmethe fine given into a parallell fine, and his parat ${ }^{\circ}$ lell Radius fhall be the Radius required.
As if $B D$ were the given fine of 50 gr . and it were required to finde the Radius: let B D be made a parallell fine of 50 Gr.by applying it over in the lines of Sines, betweene 50 and 50 ; fo his parallell Radius betweine 90 and 90 Gall beA C, the R adius required.

3 The Radius of a circle, or the right sine of any arke being given, and aftreight line refenbling. a Sine, to find the quantitie of that unknowne Sine.

Let the Radius or right fine given be turned into his pas rallell; th in take the righe-line given, and carrie it parallell to the former, tilli: fay in like Sines: fo the number or degrees and minutes where it ftayeth, thall give the quantitic of the Sine required.

As if $B D$ were the given fine of $5 \circ G r_{0}$ and $B G$ the Areight line given: firft I make B D a parallell fine of so Gr_{5}; then keeping the Soctor at this angle, I carie the line BG.
parallell, and find it to flay in no other but 40 and 40 ; aikd therefore 40 g . is this quantitic required.

> 4 The Radisus or any right Sine being giren, to find the verfed. Ine of any arke

IF the arke, whofe verfed fine is required, be lefie then the quadrait, take the fine of the complement out of the radius, and the remainder hall be the finus verfun, the verfed finc of that arke.
As If A B being the laterall Radius, it were required to find the verfed fine of 40 gr ; here the fine of the complement is A so, and therefore B so is the verf f dise requird. Or if x seckon frum B, at the end of the Sector, toward the center the diftance from 90 to 80 , is the verfed fine of 10 gr ; from go to 70 , the verfed fine of 20 gr ; from 90 to 60 , is the verled fine of 30 gr : and fo in the reft:

If $A D$ be the given fixe of so gr , and it be required to find the verfed jine of so $g r$; hicre becaufe $A D$ is unequall to the larerall fine of so gr^{\prime}; make if a parallell. And firft I fiind the radius A C then the fine of the complement A 40 , which being taken out of $A C$, leaveth C 40 for the verfed fine of sogr. which was required.

But if the arke, whofe verfed fine is required, be greater then the quadrant, his verfed fine alfo is greater then the Raduse, by the right fine of his exceffe above 90 gr .

As if A C being the Radius given, it were required to ind the verfed fine of 130 gr : here the exceffe above 90 gr . is 4° gr: and therefore the verfed fine required is equall to the Raj dius A C and $A 40$, both being fer together.

s The diameter or Radius being given, to finde the Chords of every arke.

The fines may be fitted many wayes to lerue for chords.'

1. A fine being the halfe of the chord of the double arke, if the fine be doubled, it giveth the chord of the double arke,
a Sive of 10 gr . doubled giveth a Chort of 20 gr , and a Sine of 25 gr . being doubled giveth a Chord of 30 gr . and fo in the reft. Ashere B D, the fine of B C, an arke of 40 gr . being doubled giveth B E the chord of E C E , which is an arke of 80 gr . Wherefore if the Radius of the circle given be equall to the laterall Radius, tet the SeCfor be opened neare unto his length, fo that both the lines of Sines may make but one di-rect line: fo the diftance on the fines betweene 10 and 10 , Shall be a chord of 20 , the diftance betweene 20 and 20 , hall be a chord of 40 ; and the diftance betweene 30 and 30 , thall fhall be a chord of 60 ; and ro in the reft.

2 Becaufe a fine is the halfe of the chord of the double arke. the proportion holdeth.

As the diamiter $\mathbf{F H}$ unto the Radius $\mathbf{A H}$, fo the chord: $B E$ unto the fine $D E$, or the chord $G L$ anto the fine $A L$, and then if the Radius AH , be pur for the diameter, which is a chord of 180 gr , the fine DE or AL, thall ferue for a. chord of 80 gr , and the femiradius which is the fine of 30 gr , thall rerue for a chord of 60 gr , and go for the femidiameter of a circle, and fo in the relt. So that by thefe meanes we fhail. not need to double the lines of Sines as before, but onely to double the numbers. And to this purpofe I have fubdivided
each degree of the fines into two, that fo they might thewe how far the halfe degrees do reach in the fines, and yet fand for whole degrees when they are uffd as chords.

Wherefore if the Radius of the circle given be equall to the laterall femiradius (the fine of 30 Gr .and chord of 60 Gr .) there needs no farther work then to take the fine of to $G r$ for a chord of 20 Gr , and a fane of is Gr .for a chord of 30 Gr \&c.

But if the Radius of the circle given be either greater or leffer then the laterall femiradius, take the diameter of it, and make it a parallell chord of 180 Groby applying it over the lines of Sines between 90 and 90 or take the Radius or Semidiameter which is equall to the chord of 60 Gr . and make it: a parallell Radius of 60 Gr . by applying it over in the fines of 30 and 30 , and keepe the Sector at this angle. The parallells taken from the laterall chords thall be the chords required.

As if the diameter of a circle given were the line $\subset B_{2}$, and it were required to find the chord of 80 gr : firf, I make A B a parallell chord of 280 Gr . or the halfe of it a parallell chord of 60 Gr ; fo his parallell $L \mathcal{L} \mathcal{G}$ doth give me $F G$ the chord of 80 Gr . which was reguired.

3 Seeing that as the five of the complement of the halfe arke is vnto the Radius, fo the fine of the fame whole arke is unto the chord of it: if wc feeke but for ane fingle chord, we may find it without either doubling the fines, or dotio bling the number. For applying over the Kadius given in the line of the complement of halfe the arke required, his pa: rallell fine fhall be the chord reguired.

As if the femidiameter of the circle given were $A C$, and it were required to find the chord of 40 Gr . the halfe of 40 Gr . is 20 Gr , the complement of 20 Gr is 70 Gr . Wherefore I makc e $A C$ a farallell fine of yo $G r$, and his parallell fine $G L$ doth give meF G the chord of qo Gre agreable to the femidiameter $A C$.

Having two right lines refembling the chard and verfed Sine, to find the Diameter and Radius.

Let the two right lines given be $A B$, refembling the chord, $C D$; the verfed fine of a circle, whofe arch $A \cdot C$ B is unknowne: and let it be required to find the diameter C F.
Having 2 lines given, the firf $C D$, the fecond A. D the halfe of $A B$, we may fiad a third in con-
 tinuall proportion (by the 6 or 9 Prop. of che lines) and that (hall be the line DF (I83) the fumme whereotand of C D gives the diameter C.E (80) and the halfe thereof is the Radius (E.C.)?
 diumzoter and Radius.

TVrne the chord given unto a parallell chord, and his pa: rallell femiradius fhall be the fenidiameter, and the parallell radius nall be the diámeter,

As if F G be the chord of 80 gr . I put this over in G and L, the fine of 40 , andchord of 80 gr . and the parallell chord of 180 gr: giveth me A B the diameter required.

Or if I turne the chord given into a parallell fine of the fame quantitie, his parallell fine of the complement of halfe the arke, doth give me the femidiameter.

AsifF G be the given chord of 40 gr ; I put it over in G and L , the fines of 40 gr . then becaule the halfe of 40 gr . is 20 gr . and the complement of 20 gr . is 70 gr . I take out the parallell fine of 70 gr . and it giveth me A.B for the femidias meter, agreable to that chord of 40 gr .

Having the Diameter of an Ellipfis, to defcribe the Same upon aplaine.

IFeach femidiameter be divided, in fuch fort, as the line of Sines is divided upon the Sector, and right lines drawneg

through each divifion perpendicular to thofe femidiameters like unto fines; The points, where the fines drawne through the one femidiameter do meere the fines of the complement drawne through the other Semidiamerer, Chaill be the points through which the Ellipfis is to bedrawne.

Let the diameters be AB, B: E, one croffing the middle of the other, in the ponnt C. Divide firt the lemidiameters $C A, C \mathcal{B}$; then, then the femidameters CD, CE like unto the lines of Sines upon the Sector, by the 8 Propofition of Lines: So, the Ellipfis thall be drawae through the points at the meeting of the Sines of 1α and 80 , of: 20 and 70 , of 30 and 60 \&c.

Or (wirhout the helpe of the line of Sines) we may draw the circle A F B upon the center C and femidiameter A.C. For fo; croffing the diameter $A B$ withreverall perpendicular lines continued unto the circumference of the circle, if we divide thefe perpendiculars on either fide of the diameter, in fuch fort as the greater femidiamete CF is divided, by the leffer, in the point D; and draw a line wiuding through all thofe points, the line fodrawne fhall be the Elliplis.

Or (without the helpe of the Sector) we may with the Radius A C, upon the centers D and E, defcribe two occule arches meeting in the points K and L. Then taking becweene C and K, any number of points CNE \mathcal{C}, we may from the centers K and L, with the femidiameter MB defcribe foure occult arches; and with the Radius AM, and the fame centers K and L_{0}, croffe them againe with other 4 arches in the poines at O. In like manner, from the fame centers K and L, with the Radius $2<B$, we may deferibe other 4 occult arches; and, with the Radius A. NE, and the former centers croffe them againe, with 4 arches in the points at P, and fo draw the Ellipfis through the points 0 P. \&c.

This is (in effect) as wee fhould tye a thred about $\mathcal{1}$ and L, and then draw ic eafily from the point

60 The generall ufe of Sines and Tangents?
a A, round about the two former centers K and L, untill it were brought to the point \mathcal{A} againe; which is alfo an eafy way to defcribe an Ellipfis.

The diftance of thefe former points ftom either Semidiameter may be fet downe in numbers. For, fuppofing the leffer Semidiameter $C D$, to be 10 ; the greater (CB) to be 16, (or otherwife divided into any number of knowne points,) If we have the proportion betweene $C G$ and $C B$, we may find the length of the perpendicular $G I$,
If the proportion be as ito 2 , the perpendicular will be 8.66_{0}
If the proportion beas 2 to 3 , the perpendicular will be about 7.45 .

As the greater femidiameter $C \mathcal{T}$ to the part given
So $\mathbf{1 0 0 0 0 0}$, the Radius $\quad \boldsymbol{C} \boldsymbol{B}$
to the fine of
whofe complement is $G H$
As the Radius
$C F$
to the fine of the complement $\mathrm{G} H$.
So the leffer femidiameter $\boldsymbol{C D}$
to the perpendicular GI

The fame may alfo be found without knowing the fines. For the perpendicular $G H$, is a meane proportionall betwe en © G and $\mathrm{G} B$: which being knowne As $C F$ unto $E D$, fo is $G H$ unto $G I$.

7 To opes the Sector to the quattitie of any angle given.

\& The Scctor being operved, to find the quantitic. of ibe angle.

1T is one thing to open the edges of the Sector to an angle, and another thing to open the lines on the Sector to the fame angle. For the lines of limes on the one fide, \& the lines of fines on the other fide, do make an angle of 2 gr . When the

Sctor.

Sëtor is clofe hut, and the edges doe makeno angle at all. So likewife the lines of Superficies and the lines of Solids doe make an angle of 10 gr , which are to be allowed to the edges.

The lines of limes may be opened to a right angle, if the whole line of roo parts be applied over in 80 and 60 .

The line of fines may be opened to a right angle, if the large fecant of 45 gr . be applied over in the liñes of 90 gr . or if the fine of 90 gr . be appiced over in the fines of 4 s gr . or if the fine of 45 gr . be applied over in the fines of 30 gr .

Ifieberequired to open thofe lines to any other angle, take out the chord thereof, and apply it over in the femira. dius, and thofe lines fhail be opened to that angle.

As if it were required to open the Sector in the lines of fires to an angle of 40 gr . take out the chord of 40 gr , and to it open the Sector in the chord of 60 gr . fo shall the lines of fines be opened to the angle required. Or if the fame chord of 40 Gr . be applied over betweene $\rho 0$, and. 50 , in the lines of lines, they fhall allo be opened to the fame angle. If it be applied over in 25 of the lines of Sxperfcies, or 125 in the lines of Solids, they allo fhall be opened to the fame angle: becaufe the chord of 60 Gr . or fine of 30 Gr . and 50 in the lines of lixes, and 25 in the lines of Supeoficies, and 125 in the Solids, are all of the fame length with the femiradius.

Or if the Semsiradius beapplied over betweene the fine of 30 Gr . and the fine of the complement of the angle requio red, it will open the lines of Simes to that angle.

As if the remiradius be applied over in the fines of 30 Gr : and the fine of $506 r$. it fhall open the lines of Simes to an angle of 40 Gr.

On the contrary, if the Sector be opened to an angle, and it be required to know the quantitie thereof, open the compaffes to the femiradius, and fetting one foote in the fine of 30 Gr. turne the other toward the other line of fines, and it thall fall therein the complement of the angle; if it fall on so $G r$. the angle is $40 G r$, if on 60 Gr.the angle is $30 G r$. \&c:

Or take over the parallell chord of 60 Gr . and meafure it

62 The generall ufe of Sines and Tangents. $^{\circ}$ in the laterall chord, and it thall there fhew the quantitie of the angle. As if the Sector being opened to an angle, I Ahould take over the parallell of 30 Gr . of the fines, and 60 $G r ;$ of the chords, and meafure it in the laterall chords, find is to be 40 Gr . the angle comprehended betweene the lines of Sines is 40 Gr . but the angle betweene the edges of the S:ctor is 2 Gr . leffe, and therefore but 38 Gr .

9: To firade the quartitic of any.angle given.

1F out of the angular point, to the quantit?e of the Semsiradius, be defcribed an occult arke that may cut both fides of the angle, the chord of this arke meafured in the lateralt chord, fhall give the quantitie of the angle.

Let the anglegiven be \mathcal{B}. A C : firt I take the Semiradins with the compafles, and fetting one foote in A, I cut the fides of the angle in B and C; then I take the chord $B C$, and meafure it in the laterall chord, and I find it to be $1 x \mathrm{Gr}$. and 15. M. and fuch is the quantitic of the angle givin.

B.

Or if the arke be defcrib:d out of the angular point at $2=$ ny other diftance, let the femidiameter be turned into a pasallall chord of 60 Gr . then take the chord of this arke, and carrie it parallell till it crolfe in like chords : fo the place where it ftayeth hall give the quantitic of the angle.

As in the former example, if I make the femidiameter $A B$ a parallell chord of 60 Gr. and then keeping the Sector at that angle, carrie the chord $B C$ parallell, till it fay in like chords; I fhall finde it to ftay in no other but II. $\mathrm{Gr} .15 \mathrm{M}_{\text {. }}$. and fuch is the angle $B A C$:

10 Vpona right line ana' apoint given in it, to make an angle equall to asy angle given.

FIrft ont of the point given defcribe an arke, cuitting the fame line: then by the 5 . Prop.afore, find the chord of the angle given agreeable to the fumidiameter, and inicribe it intothis arke: fo a right line drawne through the point given, and the end of this chord, fhall be the fide that makes ve. the angle.

Let the right line given bee $A \mathcal{B}$, and the point given in it be A, and let the angle given be in gr. 15 m . Here I opan the compafies to any femidiameter $A \cdot B$, (but as oft as I may conveniently to the laterall femiradius) and fetting one foote. in \mathcal{A}, I defribe an occult arke $B C$; then I feeke out the chord of ${ }_{11} \mathrm{gr} .15 \mathrm{~m}$. and taking it with the compaffes, Ifet one foote in \mathcal{B}, the other croffeth the arke in C, by which Idraw the line $A C$, and it makes up the angle required

It To divide the circumferencc of a circle

 into any purts required.1F 360 the meafure of the whole circumference be divided by the number of parts required, the quotient giveth the chord, which being found will divide the circumterence.
So a chord of 120 gr . will divide the circumference into 3 equall parts; a chord of 90 gr . into 4 parts ;a chord of 72 gr into 5 parts; a chord of 60 gr . into 6 parts;a chord of 51 gr .26 in7o 7 parts; a chord of 45 gr . into 8 parts; a chord of 40 gr into 9 parts; a chord of 36 gr , into 10 parts; a chord of 32 gr ; 44 m . into II parts; a chord of 30 gr . into 12 parts

In like maner if it be required to divide the circumference of the circle whofe femidiameter is $A B$, into 32 : firft I take the femidiamerer $A \mathrm{~B}$ and, make it a parallell chord $\oplus \mathrm{f} 60 \mathrm{gr}$; then becaufe 360 gr . being divided by 32 the quotient will. be $11 g r$, I m. I find the parallell chord of 1 gr, $15 m$ and: shis will divide the circumference into $3 z^{2}$.

But here the parts being many, it were better to divide it firftinto fewer, and after to come over it againe. As firft to divide the circumference into 4 , and then each 4 parts into 8, or otherwile, as the parts may be d.vided.

> 12 To divede a right line by extreme and meare proportion.

THe lineto be divided by extreme and meane propor tion, hath the lame proportion to his greater fegmenr, as in figures infcribed in the fame circle, the fide of an bexa. gon a figure of fix angles, bath to a fide of a decagon a figure of ten angles: but the fide of a bexagon is a chord of 60 gr . and the fide of a decagon is a chord of 36 gr .

Let $A B$ be the line to be divided: if I make $A B$ a parallell chord of $60 \mathrm{gr} . \operatorname{nnd}$ to this femidiameter find $A \subset$ a chord of 36 gr . this A C fhall be the greater fegment, dividing the whole line in C, by cxtieme and meane proportion. So that,

As $A B$, he whole line is unto $A C$ the greater fegment: fo $A C$ the greater fegment unto $C B$ the leffer fegment. Or let $\mathcal{A} C$ be the greater fegment given: if I make this a parallell chord of 36 gr . the correfpondent femidiameter fhall be the whole line AB, and the difference C B the lefier fegment.

Orlet $C B$ be the leffer fegment given: if I make this a parallell chord of 36 gr . the correfpondent femidiameter Shall be the greater fegment $A C$ which added to CB , given the whole line A B.

To avoid doubling of lines or numbers, youmay put over the whole line in the Sines of 72 gr . and the parallell fine of 36 gr . ीhall be the greater fegment.

Or if you put over the whole line in the fines of 54 gr : the parallell fine of 30 gr . fhall be the greater fegment, and the patallell ine of 18 gr . Thall be the leffer fegment.

CHAP

CHAP.III,

Of the proiection of the Sphere in Plano.

'THe Sphere may be proiected in Plano in freight fines, as in the Analemma, if the Semidiamiter of the circle given bee divided in fuch fort as the line of Sines on the Sector.

As if the Radius of the cirle given were $A E$, the circle thereon defcribed may reprefent the plane of the generall meridian, which divided into foure equal parts in E, P, E, S, and croffed at right angles with $E \notin$ and $P S$, the diamiter $E \mathbb{E}$, fhall reprefent the xquator, and $P S$ the circle ot the houre of 6 . And it is alfo the Axis of the world, wherein P ftands for the North fole, and S for the South pole. Then nay each quarter of the meridian be divided into 90 degrees from the x quator towards the poles. In which if we number $23 \operatorname{deg}$. 30 min. the greateft declination of the Sunne from E to 69 North wards, from \notin to w_{0} Southwards, the line drawne from 69 to w fhall be the ecliptique, and the lines drawne parallell to the equator through os and ψ_{0} fhalt be the tropiques.

Having thefe common fections with the plane of the meridian, if we hall divide each Semidiameter of the Ecliprique into 90 degr. in fuch fort as the Sines are divided on the Sector. The filf 30 degr. from \boldsymbol{A} towards σ, fhall fand for the fine of r. The 30 degr. next following for ζ. The reft for II. $5 . \Omega \& c$. in their order. So that by thefe meanes we have the place of the S un for all times of the yeare.

If againe we divide $A P A S$, in the like fort, and fet to the numbers 10. 20. 30 . \&c. unto 90 degres, the lines drawne through each of thefe degrees parallell to the equa-

tor, fhall fhew the declination of the Sunne, and repefent the paralells of latitude.

If farther we divide $A E, A R$, and each of his paralells equally in the like fort, and then carefully draw a line through each 15 degrees, fo as it makes no angles; the lines to drawne fhall be elipficall, and reprefent the houre-circles.

of the Proiection of the Spare.

cles. The meridian $P E S$, the houre of i 2 at noone; that next un:o it drawne through 75 degrees from the' Center the houres of $\mathbf{I I}$ and \mathbf{I}, that which is drawne through 60 degrees from the center the houres of 10 and 2. 8 c .

To thefe wee may adde the monthes of the yeare, and the dayes of each moneth, placing Ianvarie abouc F, March about \mathcal{E}, Inne about I, Inbie about K, September, about E A, December, about the Tropique of wo: and fo the reft according to their Declination from the Equator.
Then having refpect unto the latitude, we may number it from E Northward unto Z, and there place the Z nith: by which and the c anter the line drawne $\mathrm{Z} A$ N fhall reprefent the verticall Circle, paffing through the Z enith and Nadir Eaft and Weft, and the line M © H croffing it at right angies, fhall reprefent the horizon.

Thefe two being divided in the fame fort as the ecliptique and the xquator, the line drawne through each degrec of the Semidiameter $A \mathrm{Z}$, parallell to the horizon, fhall be the Circles of altitude, and the divifions in the horizon and his parallells fhall give the azimuth.
Lafly, if through 18 gr . in $A N$, be drawne a right line $I K$ parallel to the horizon, it fhall hew the time when the day breakech, and che end of the twilight.

For example of this proiection, let the place of the Sun be the laft degree of \forall, the parallell paffing through this pace is $L D$, and therefore the meridian altitude $M L$, and the depreffion betow the ho izon at midnight $H \mathcal{D}$: the femidiurnall arke $L C$, the feminocturaall arke C D , the declination $\mathcal{A} B$, the afcentionall difference $\mathcal{B} C$, the amplitude of afcention $A C$. The difference betweene the end of twilight and the day breake is very fmall; for it feemes the paralrell of the Sun doth hardly croffe the line of twilight.

If the altitude of the Sunne begiven, let a line bee drawne from it parallell to the horizon: fo it fhall croffe the parallell of the Sunne, and there fhew both the azimuth and the houre of the houre of the day. As if the place of the Sunne being given as before, the Aititude in the morning were found to be zo degr. the line $F G$, drawne parallell to the horizon through 20 degrees 10 A Z, wauld croffe the parallell of the Sun in \odot. Wherefore $F \odot$ theweh the azimuth, and $L \odot \cdot$ the quantitie of thoures from the meridian. It fermes to be about halfe on houre patt 6 in the morning, and yet more thenthaife a point fhort ofthe Eaft.

The difta ce of two places may be alfo fhewed by this proiection, their latitudes being knowne, and their d.ffrence of longitude.

For fuppofe a place in the Eaft of Arabia; having 30 degr. of North latitude, whofe difference of longitude from London, is found to be an Ecliple to be 5 boures $\frac{1}{2}$. Let Z bethe Zenith of 'ondon, the parallell of latirude for that other place mult be $L D$, in which the difference of longitude si L \odot. Wherefore \odot reprefenting the fite of that place, I drawe through \odot a parallell to the horizon $M H$, croffing the verticall $A Z$ neare about 70 degres from the zenith, which multiplied by 20, fheweth the diftance of London, and that place to be 1400 leagues. Or multiplyed by 60 , to be 4200 miles.

2 The Sphere may be proiected in plano by circular limes, as in the generall Aftrolabe of Gemma Frifus, by the help of the tangent on the fide of the Sestor.

For let the circle given reprefent the plane of the geerall meridian as before ; let it be divided into foure arts, and croffed at right angles with $E \notin$ the equator, and $P S$ the circle of the houre of 6 , wherein \mathcal{P} fands for the North pole, and S for the South pole. Let each quarter of the meridian be divided into 90 . degres and fo the whole into 360 , beginning from P,
and Cecting to the numbers of $10,20,30.8 \mathrm{cc}$. 90 at : $E_{\text {, }}$ 180 at $S, 270$ at $E, 360$ at P : The emidianiters:

$A P, A E$, may be divided according to the tangents of halfe their Arkes, that is a tangent of 45 degrees, .which is alwayes $\mathbf{1 0 0 0 0 0}$ equall to the Radiuss hail give

$$
\text { K } 3
$$ 83910, fhall give 80 degrees, in the femidiamiter: a tangent of 35 degrees 70021 flall give 70 . $\$ \mathrm{cc}$. So that the femidiameters may bee divided in fuch fort as the tangent on the fide of the Secior, the difference being onely in their denomination.

Having dividd the circumference and the femidiameters, we may eafily draw the meridians and the paraHels by the help of the Sector.

The meridians are to be drawne through both the poles P and S, and the degrees before graduated in the xquator. The diftance of the center of each rereridian from A the center of the plane, is equall to the tangent of the fame meridian, reckoned from the generall meridian P \&. $S E$, and the fe midiameter squall to the fecant of the fame degree.
As for example, if I fhould drawe the meridian P B S, which is the tenth from $\mathcal{P} \notin S$, the tangent of 10 gr . $\mathbf{1 7 6 3 3}$, giveth mc $A C$, and the lecant of 10 gr . 101543 , giveth me $S C$, wherefore C is the center of the meridian $\mathcal{T}_{\mathcal{B}} S, \& C S$ his femidiameter: fo $A F$ a tangent of 20 gr . 36397 hheweth F to be the center of $P D S$, the twentith meridian from $\mathcal{P} E S \& A G$ a tangent of 23 gr .30 m. 4348 I , heweth G to be the center of $P \sigma 9 \mathrm{~S}$. \&c.

The parallels are to be drawne through the degrees, in $A P A S$, and their correfpondent degrees in the generall meridian. The diftance of the center of each parallell from A the center of the plane, is equall to the fecant of the fame parallell from the pole, and the femidiameter equall to the targent of the fame degree. As if I hould draw the parallell of 80 degrees which is the tenth from the pole S, firft I open the compafis unto $A C$ the tangent of 10 degrees 17633 , and this giverh me the femidiamerer of this parallell, whofe center is a little from S_{0} in in fuch diftance as 101543 the fecants $S C$ is longer then roooon, the Radius $: A$.

The meridians and parallels being dra wne, if we number

of the Proiecition of the Sphare.

ber the i_{3} degr. $30 m$ from E to σ Northwards, from E to wg Southward, the line drawne from s to is thall be the ecliptique: which beng divided in fuch fort as the femidiameter $A P$, the firft 30 degr. from A to Thall ftand tor the fine of r; the $\mathfrak{j o}$ degr. next following tor ૪; the relt for III σ 约. \&c. intheir order.

If farther we have relpect anto the latitude, we may number it from E Northward unto Z, and there place the zenith, by which and the center, the line drawne $Z A \mathcal{N}$ thail reprefent the verticall circle, and the line $M \in A H$ crolling it at right angles, thall reprefent the horizons and thele divided in the fame fort as $A P$, the circles. drawne through each degree of the femidiameter $A \mathrm{Z}$, parailell to the horizon, fhall be the circles of altitude: and the circles drawne through the horizon and his poles ${ }_{3}$ fhall giue the Azimuths.

For example of this proiection, let the place of the Sun be in the beginning of m, the parallell paffing through this place is a $\odot L$, and therefore the meridian altitude M1 L, and the depreffion below the horizon at midinight HO, the femidiurna!l arke $\mathcal{L} \odot$, the feminocturnall arke $0 \odot$, the dectination $A R$, the afcenfonail diffrence $R \odot$ the amplitude of afcention $A!$ ©.

Or if A be pute reprefent the pole of the world, then fhall $P \nleftarrow S E$ ftand for the $x q u a t o r, ~ a n d ~ P o s w ~$ for the eclipique, and the reft which before food for meridians, may now ferue for particular horizons, according to their feverall elevations. Then fuppofe the place of the Sunne given to be 24 degrees of γ, his longitude thall be $P \quad$, his right afcention P, his declination H. And if the place given be 19 degr. of S, his longitu de thall be $P K$, his right afcention $\vec{P} N$, his declination $I \mathbb{K}$. Againe, the declination brought to the horizon of the flace, thall there fiew the afcentionall diff reace, amplitude of afcention, \& the iike conclufions of the globe. Put I intend not here to fhew the vfe of the Aftrolabe, bur the vfe of the Sector in proiection. fhew the houre of the night; wherẹof I will fet downe a type: for the vfe of Sea-men;

It confifts as you fee of two parts, the one is a plane, divided equally according to the 24 houres of the day, and earh houre into quarters or minutes, as the plane will beare: the linie frcm the center to XII, fands for the meridian, and X11, flands for the houre of 12 at midnight. The other part is a rundle for fuch ftarres as are neaie the North pole, together with the 12 moneths, and the dayes of each moneth fitted to the right afcention'of the fares. Thofe that have occafion to fee the South

Pag. 7^{2}, of the Sectoris

South pole, may do the like for the Southerne confellations, and put them in a rundle on the back of this plane, and foit may ferve for all the world.

The ve of this nocturnall is eafie and ready. For looke vp to the pole, ard fee what flarres are neare the meridian, then place the rundle to the like fituation, to the day of the moneth will fhew the houre of the night.

3 The Sphare may be proiected in plano by circular lines, as in the particular Altrolabe of Iobr Stophlerin, by help of the tangent, as before.

For let the circle given reprefent the tropique of $2 p_{0}$ let it be divided into foure parts, and croffed at right angles with $A C$ the equinoctiall coloure, and $M \mathcal{B}$ the folftitial! coloure, and generall meridian, the center p reprefenting the pole of the world. Let cach quarter be divided into 90 degrees, and to the whole into 360 , brginning from \mathcal{A} towards B. The meridian P M, or P, may be divided according to the tangent of halfe his arke. So as the aker from the North pole to the tropique w, being 90 degrces and 23 degrees 30 m. that is in 3 degrees 30 m . and the halfe arke 56 degrees 45 m . the meridian thall be divided into 90 degrees and 23 degrees 30 mL . in fuch fort as the tangent of 56 degrees $45 m_{0}$ on the fide of the Sector is divided into degrees and halfe degrees; of which $P E$ the arke of the xquator 90 degrees from the pole, Thall be given by the tangent of 45 degrees. And $P 69$ the arke of the Summer tropigue 66 degrois 30 m . from the pole, thall be given by the tangent of 33 degrees 15 mm . And the circles drawne vpon the center P through E. and σ, fhall be the $x q u a t o r$, and the S ummer tropique.

Having the xquator and both the tropiques, the ecliptique $r \sigma^{\approx} \approx$ goll be-drawne from the one tropique to the other, through the interfection of the xquator and the Equinoctiall colure, And it may be divided firft into the twelue fignes after this maner: \mathcal{P} E the arke of the pole of the ecliptique 23 degrees 30 m . gitude paffing through this pole $E \vee$ and \bumpeq, fhall be found at D (fomewhat belowe B) by the tangent of 66 degrees 30 m . Then through \mathcal{D} draw an occult line parallell to $A C$. and divide it on each fide from D, in fuch fort as the tangent is divided on the fide of the SeCtor, allowing 45 degrees to be equall to $D E$, So the thirtith degree from \mathcal{D} toward the right hand, fhall be the center of the circle of longitude paffing through ε ช and m. The fixtith degree, the center of II $E f$. The thir tith degree from $\mathcal{D}_{\text {towards the left hand, the cen- }}$ ter of $\mathcal{F} E n$. The fixtith, the center of $\equiv E \Omega$. And the other intermediate degrees fhall be the centers to divide each figneinto 30 gr.

If farther we have relpect unto the latitude, we may (the meridian being before divided) number it from P North-ward unto H, and there place the North interfection of the meridian and horizon: then the complement of the latitude being numbred from \mathcal{P} Southward unto Z , fhall there give the zenith; and 90 degr. from Z Southward unto F, fhall there give the South interfection of the meridian and horizon. The middle betweene F and H flall be G the center of the hor izon $r H \bumpeq \mathrm{~F}$, paffing through the beginning of γ and \approx.unleffe there be fome former errour.

All paralles to the horizon may be foond in like fort by their interfections with the meridian, and the middle betweene thofe interfections is alwayes the! cenzer.
The Azimuths may be drawne as the circles of longitude were before. For the circle of the firft verticall $\stackrel{\rightharpoonup}{\dot{r}} Z \bumpeq$ will be found at I (fomewhat neere unto B) by the tangent of the latitude. And if through I we draw an occult line parallell to es C , and divide it on each fifde from I, in fuch fort as the tangent is divided

on the fide of the Sector, allowing 45 degrees to be e quall to $L Z$, thefe divifions fhall be the centers, and the diftance from thefe divifions unto Z, hall be the femidiameters whercon to defcribe the ref of the Azimuths.

$$
\text { Lz } \quad \text { The }
$$

iFor example of this proiection, let \odot the place of the Sunne given be io degr. of $\gamma:$ a right line drawne from \mathcal{P} through this place unto the aquator, fh ill there Shew his rightafcention $\checkmark K$, and his declination K. Thea may we on the center \mathcal{P} and femidiamiter $\odot \mathcal{P}$, draw an occult parallell of declination, croffing the horizon in L and \mathcal{M}, the maridian in G and N. So the right lines $P L$ and $P M$ produced, fhall fhew the time of the Suanes rifing and fetting, $r Q$ the difference of afcention, $\approx R$ the difference of defcention, $r I$ the amplitude of his rifing, and $\approx M$ the amplitude of hi s fetting. $L N M$ fheweth the length of the night. 29 theweth his diftance from the zenithat noone, H \boldsymbol{N} his depreffion below the horizori at midnight. And then having the altitude of the Sume at any time of the day, the interfection of the parallell of altitude with the parallell of declination, fheweth the Azimuth, and a right line drawne from P through this interfection, giveth the houre of the day.
4. The Sphare may be proiected in plano by circular lines, after the maner of the old concave hemifphare, by the help of the tangent on the fide of the Sector.

For let the circle given reprefent the plane of the horizon, let it be divided into foure parts, and croffed at right angles with $S N$ the meridian, and $E V$ the verticall; fo. as S may ftand for the South, \sum for the North, E for the Ealt, V the Weil part of the horizon, and the center Z reprefentalifo the zenith. Let each quarter of the horizon be divided into 90 degrees, and fo the whole into 360 degre. beginning from N , and fetting to the numbers of 10.20 .30 . \&c. 90 at $\mathcal{E}, 180$ at $S, 270$ at $V, 360$ at \mathcal{N}.

The femidiamiter Z $2 \mathcal{L}, \mathrm{Z} S$, may be divided according to the tangent of halfe their arkes: fo as the arke from the zenith to the hor zon being $9 \supset \mathrm{gr}$. and the halfe arke 45 gr . the femidiamiters are to be divided in fuch fort as the tangent of $4 \varsigma \mathrm{gr}$. as was hewed before in the fecond proiection. And if from Z we draw circles through each

of the Proietion of the Sphere:

of thefe divifions, they fhill be paraleles of altitude.
Then having refpef uato the altitude, we may (thic meridian being before divided) number it from Z to $£$, and there place the interfection of the meridian and x quator. The complement of the hatitude from Z vato P;

Bhall there give the pole of the world, and 90 further from P Phall there give the other interfection of the mesidian and $x q u a t o r$.

The middle betweene thefe interfections thall be et the center of the aquator, pafirg through ε and F, unlefte there be fome former crrour. The interfections of the trofiques depend on the xquator. From $\boldsymbol{E}_{1} 23$ degrees 30 m . farther fhall be wi, the interfecion of the meridian and the Scutherne trcpique. From $E 23$ dee grees 30 m . nearer thall be 5 , the interifection of the meridian and the Northerne tre pique. The interfections of the other intermediate parallels, thall be given in like fort, by their degrees of diftance from the aquator, and the middle betweene thofe interfections is alwayes the eenter.

The houre circles may be here diawne as the Azimuths in the third proiection. For the center of $\varepsilon P, V$, the houre of 6 will be found at B (fomew hat neare unto 2 C) by the tangent of the latitude. And if through B we draw an occult line parallell unto εV, and divide it on each fide from B, in finch fort as the tatigent is divided on the fide of the Sector, allowing 45 degrees to be equall to $\mathcal{B} P$, and 15 degrees for every houre: thofe divifions fhall be the centers, and the diftanee from the divifions unto P, fhall be the femidiameters, wheron to defcribe the reft of the houre circles.

The ecliptigue may be drawne las the xquator . For the eenter of that halfe which hath Southerne declina, tion, thall be given by the tangent of the altitude, which the Sunne hath in his entrance into 2\%o. And the center of the other halfe, by the tangent of his alticude, at his entrance into 5s. And it may be divided, as in the former proiection, or elfe by tables calculated to that purpofe.

To theie circles thus drawne, if we fhall addd the moneths of the yeare, and the dayes of each monerh, as we may well : doe, at the horizon, on either fide be-
betweene the tropiques ; this proiection hall be fitted for the moft vefuill conclufions of the Globed

For the day of the moneth being given, the parallell that fhooteth on it, doth fhew what declination the Sunne hath at that time of the yeare. And where this parallell croffeth the ecliptique, there is the place of the Sunne. Or the place of the Sunne being firt given, the parallel which croffeth it, fhall at the horizon fhew the day of the moneth. Either of thefe then being given, or onely the parallell of declination, we may follow it firt unto the horizon, there the diftance of the end of the parallell from E or V, hewech the amplitude; the fame among the houre circles fheweth the time, when the Sumne riferh or fettecth. Then having the alcitude of the Sunne at any time of the day, the interfection of the parallell of declination with the parallell of altitude, fheweth the houre of the day; and a right line drawne from Z, through this interfection to the horizon, giveth the Azimuth.

Thus in either of thefe proie Ctions ; that which is otherwife moft troublefome, is eafily done by the help of the tangent line: and what I have faid of this line, the fame may be wrought by fcale and numbers out of the table of tangents.

CHAP. IV.

Of the refolution of right-line Triangles.

IN all Triangles there being fixe parts, viz. three angles and three fides, any three of them being given, the reft may be found by the Sector.
As may appeare by the Prot. following, wheren for our practire we may vie thefe triangles $C E A, C E B, C E D$, are re tangle in B, and A GF retangle in $\mathrm{G}_{\text {, the }}$ reft confint of oblique angles.

Ang. Gr, M. S. Lin. Darts. Aug. Gr, M. S. Lino Parts'					
G	20.0	$A F$	100	BCE 53-748	BD 28
\cdots	-161536	FG	28	$E C D$	$A^{\prime} D 28$
D	365212	$C E$	21	$B C D 1061536$	$B E \quad 56$
B	. 365212	${ }^{C D}$	35	$A C D 1265212$	εD_{100}
B	143748	CB	35		
$A F G$	734412	AG	96		
ACE	734412	AE	72		
$A C B$	203636	$A B$	44		

Let the Sector be opend in the line of lines to a right angle; (as before was hewed Cap. 2. Prop.7.) then take our the fides of the triangle, and lay them, one on one line, the other on the other line, fo as they meete in the center, \& marke how farre they 'extend. For the lise taken from the termes of their extenfion, thall be the bafe required, viz. the fide oppofite to the right angle.

Or adde the fquares of the two fides (as in Prop.4. Superfic.) and the fide of the compound fquare fhall be the bafe.

As if the lines $A E, C E$, flould be the fides about the right angle, and it were required to find the bafe fubtending the right angle.
betweene the ttopiques ; this proiection thall be fitted for the moft vfefull conclufions of the Globe.

For the day of the moneth being given, the parallell that fhootcth on it, doth hew what declination the Sunine hath at that time of the yeare. And where this parallell croffeth the ecliprique, there is the place of the Sumne. Or the place of the Snuue being firf given, the paraliell which croffeth it, hall at the horizon hew theday of the moneth. Either of thefe then being given, or onely the paralledil of de. clination, we may tollow it firf unto the horizon, there the diftance of the end of the parallell from E or V, theweth the amplitude; the fame among the houre circles fheweth the time, when the Sunne rifeth or fetteth. Then having the alcitude of the Sunne at any time of the day, the interfection of the parallell of declination with the parallell of alo titude; theweth the houre of the day; and a right line drawne from Z, through this interfection to the horizon, giveth the Azimuth.

Thus in either of thefe proiections, that which is other: wife moft troublefone, is eafily done by the helpe of the tangent line : and what I have faid of this line, the fame may be wrought by fcale \& numbers out of the table of tangents.

CHAP. IV.

of the refolution of right line Triangles.

tN all Triangles there being fixe parts, viz. three angles and three fides, any three of them being given, the reft may be found by the Sector.

As may appeare by the Prop. following, wherein for ou practife we may vfe thefe triangles CE A, C E B, C E D are rectangle in E, and A G F reatangle in G the reft confidt of oblique angles.

80
of the proiection of the Sphare.

Ango	Gr.M. S.	Lin.	Parts.	Ang.	Gr. M. S.	Lin. Parts
	9000	$A C$	75	$B C E$	53748	$\begin{array}{lll}B \mathcal{D} & 28\end{array}$
6	90.6	$A F$	100	ECD	53748	$A D, 28$
${ }^{*}$	16.1536	$F G$	- 28	$B C D$	1061536	$B E$ S ${ }^{\text {c }}$
D	365212	$C E$	21	$A C D$	1265212	$E \mathcal{D} \cdot 100$
${ }^{\text {B }}$	365212	$C D$	- 35			
\mathcal{B}	143.748	$C B$	${ }^{4} 35$	\cdots		
AFG	734412	AO	- 96			
$A C E$	734412	$A E$	72			
$A \cdot C B$	203636	$A B$	44			

In a Rectangle right live T riangle, ITofinde the bafe, both fides leinsoiven.

Let the Sector be opened in the line oflines to a right ano gle, (as before was fhewid Cap. 2. Prop. 7.) then take ont the fides of the triangle, and lay them, one on one line, the other on the other line, fo as they mete in the center, \& marke how farre they extend. For the line taken from the termes of their extenfion, fhall be the bafe.required, vizi the fide op ofite to the right angle.

Or.adde the fquares of the two fides (as in Prop. 4 . Super.fic.) and the fide of the compound fquare thall be the bafe.

As if the lines e A E, C E, hould be the fides about the right angle, and it were required to fiid the bafefub:ending theright angle.

Firk, I fet the line of Lises to a right angle by applying the whole line of ro from 6 in the one lane to 8 in the other. Then if the greater of the two lines given be leffe then the line of: Lires, I take the greater of them $\mathscr{A E}$, and transferr it with the compafies into one of the lines of lines, and find, that, in my Seftor (which is 4 inches long, and fo, the line of Limes. almoft 7 inches) it reacheth from the center to $5 \mathbf{1 8 .}$

Againe, I take the lefler line $C E$, and transferr it into the other line of Lines, and find, that ir reacheth from the center unto 15 1. wherefore I take the diftance from 151 unto 518 , and fuch is the length of the Bafe $A C$ required. .

If either of the lines given be too large for the SeCtor, then I may meafure them by feet or inches, and fuppofe I find the length of $A \varepsilon$ to be about 720 , and of $C \mathcal{1}, 210$ Then, in the Fine of L ines (being fer, one perpendicular to the other, as before) I extend the Compaffes from 210 unto 720 ;and meafuring this extent in the line of lines, find it to be 750 parts. wherefore, I prick downe 750 parts, in the line $A C$, from the fame fcale by which I meafured $\mathcal{A} E$, and $C \mathcal{E}_{0}$. So, this tine $A C$ hall be the Bafe required.

In working by the line of Superficies. I need no opening of the Sector. For, taking the line $C \varepsilon$ with my compaffes, and meafuring it in the line of Skperficies upon my Secter, I find it neere 13 . parts.

Then taking the line $A E$, I find it to be about 269; There two being added together make 292 : and this extent is the length of the bate e C. required.

> 2 Tofind the bafe by baving the angles: and oue of the fides given.

Take the fide given, and turne it into the parallell fine of his oppofite angle; fo the parallell Radius fhall be the bafc.

As if the line $A E$ were the fide of a rectangle triangle ope pofite to an angle of $73^{\circ} \mathrm{gr} .45^{\circ}$, and it were required to find the Ba le,

Firft, I take the fide $\mathscr{A} E$ with my compaffes, and fet it
over
it over in the fines of 73 Gr. 45°. So, the parallell radius ta: ken from betweens 90 and 90 , will give the Bafe AC required.

If the fide given be fuch as cannot well be fitted over in the fines of his oppofiee angle, Imy mealure it by feet or inches, and fuppofe I find the length of $A E$ to be 720 . then Would I take 7^{20} parts, out of the line of lines, and make it a parailell Sine of $73 \mathrm{~g}^{\prime} \cdot 45^{\prime}$. So, the parallell Radius taken from between 90 and 90 , and meafured in the line of lises will be found to be about 750 parts : wherefore, I pricke do wne 750 in the line A C, by the fame fcale, whereby I mealured $A E$: and this line $A C$ chall be the Bafe required.

3 To find a fide by baving the bafer

 and the other fide given.Let the Sector be opened in the lines of lines to a right angle, and the fide given laid on one of thofe lines from the center : then take the bafe with a paire of compafes, and fetting one foote in the terme of the given fide, turne the other to the other line of the Sefior, and it thall there fhew. the fide required.

Or take the lquare of the fide out of the fquare of the bale (as in Prop.4. Superf.) and the fide of the remaining fquare fhall be the fide required.

Thus having A C for the Bale, and C E, for the fide of 3 rectangle triangle, the other fide will be found to be AE.

Or, if A C, being meafured, be 750 , and CE, 210 , the other fide $\mathrm{A} E$ will be found to be 720 .

> 4 To find a fide having the bafa. and the angles given.

> Take thg bafe given, and make it a parallell Radius; fo:

the
t登e parallell fines of the angles, fhall bee the the oppofite Ades required.

Thus in the Reetangle A E C, if A C be made a parallell Radius, the parallell fine of $73 \mathrm{gr} .45^{\circ}$ will give the fide $\mathcal{A}^{A} \mathrm{E}$; and the parallell fine of 16 Gr . $1 s^{\prime}$ will give the other fide $C E$.

5 Io find afide by having the other ficte and the angles given.

Take the fide given, and tnrue it into his parallell fine of his oppofite angle : fo the parallell fine of the complement Stall be the side required.

Thus in the Rectangle D E C, if CE be made a parallell fine of $53 G r .8^{\prime}$ the parallell fine of $36 G r .52^{\circ}$. will give the fide ED: and the parallell Gine of 90 gr , will give the Bare CD.

- To find:be angles by baving the bafe and one of the fides givens.

Firft, take out the bafe given, and laying it on both fides of the Sector, fo as they may meete in the center, and marke how farre it extendeth. Then take out we laterall Radius, and to it open the Sector in the termes of the bafe. This done, take out the fide given, and place it alfo on the fame lines of the Sector from the center. For the paraliell taken in the termes of this fide, chail be the fine of his oppofite angle,

Or take the bale given, and make it a parallell Radius; then take the fide given, and carrie it parallell to the bafe, till it flay in like fimes: fo they Ghall give the quantite of the oppofite angle.

Thus in the Rectangle $A E C$ having the Bafe $A C$, and the fide A E, you may finde the angle CAE, to be $86 \mathrm{gr}^{1} 85^{\prime}$. Refolution of right-line triangles:

7 Tofind the angles by baving both the fides given

Take out the greater fide, and lay it on both fides of the Sector, fo as they meete in the center, and marke how farre it extendeth. Then take the other fide, and to it open the $\mathrm{Se}-$ Eor in the termes of the greater fide; fo the parallell Radius. nhall be the tangent of the leffer angle. The third angle is alowayes knowne by the complement.

Thus in the Rectangle $D E C$, having the fides $C E$, and. $\varepsilon \mathcal{D}$, you may find the leffer angle $E C D$ to be $36 \mathrm{~g} \cdot{52^{\prime} \text {, and } . ~ . ~}_{\text {and }}$ therefore the other angle $E \mathcal{D}$ C to be 53.8°;
> 8. The Radius being given, to find the tangest, and fecant of any arke.
> 9. Ihe tangent of any arke being given, to find the Secast tbereof, and the Radius.
> 10 The fecant of any arke being given, tofind thtangent thereof, and the Radiw.

The tangent, and the fecant, together with the Radius of every arke, do make a rightangle triangle; whofe fides arethe Radius and tangent, and the bafe alwayes the fecamt; and. the angles alwayes knowne by reafon of the given arkes. As in the Rectangle $\mathcal{A} E C$, if on the center \mathscr{A}, and femidiameter $A \varepsilon$, you defrribeacircle, then make $A \mathcal{E}$, to be the Radius, and $E C_{2}$ a a tangent of 16.15 and $A C_{2}$ fecant of I6 gr. 15°.

If you defribe a circle on the center C, and femidiameter $C E$, thenis $C E$ the Radius and $E A$, a tanget of 73.45° and. C A a fecant of 73.45 .
Wherefore the Iolution is the fame with thole before:
In any rigbt-lined triangle what foever,
II Ta find a fide by knowing the ather two fides,; and the angle contained by them.
Let the Selter be opeard inthe lines of llwes to the angle

Refolation of righb-linc triangles.

83
given as I thewed before cop 2 Prop. 7. Then take out the fides of the triangle, \& laying them the one on the one line, the other on the other, fo as chey meete in the center, marke how far they extend. For the line taken betweene the termes of their extenfion, fhall be the third fide required.

As if A Cand $A D$ were two fides of a right lined triangle conteining an angle of $16 \mathrm{gr} .16^{\prime}$ and it were required, to find the third fide fubtending this angle.

Eirtt I fet the lines to an angle of $16.16^{\prime \prime}$. by applying the fine of $8 \mathrm{gr} .8^{\prime}$ over in the points of 50 and 50 , in the line of lines. That done, I take the longer line A D, and transfer it with my compaffes, into one of thelines of lines, and find it to reach from the center to 720 .

Againe, I take the leffer line A C, and transfer it into the other line of lines, where it reacheth from the center to 540 . wherefore, I take the diftance from 540 to 720 , and fuch is the length of the 3 fide $C D$ required.

Or (if thelines be given in meafure) A D roo, and AC 75 : I extend the compaffes from rooto 75, and meafuring this extent in the line of lines, find to be 35 . Whereupon I take 35 parts out of the fcale, by which A C, and A D were meafured and prick them downe in the line CD. So, this line $C D_{3}$, lall be the third fide required.
> 12. To find a fide by having the other two fides, and one of the ediacens angles, fo it be knowne which of the otber angles. is aciute or obltque

Zet the Settor be opened in the line of lines to the angle given, and the adiacent fide laid on one of thofe lines from the center; then take the other fide with a paire of compaffes, and fetting one foote in the terme of the former given Ifde, turne the other to the other line of the Se Cfor which here zeprefenteth the fiderequired, and it fhall crose it in two
$8 \overline{4}$ Itfolution of right. line Triangles:
places; but with which of them is the terme of the fide requia red, mult be judged by the angle.

As if in the triangle following, the fide $A C$ being given; and the fide $C D$ and the angle $C \mathcal{A} 16 \mathrm{gr} .16 \mathrm{~m}$. it were required to find the fide $A D$.

Firft I open the Sector in the line of lines to an angle of 16 gr .16 m . and laying the adiacent fide from the center CA^{2}, find where is extendeth in C. Then I take the other fide $C D$ with the compaffes, and fetting one foote in C , \& turning the other to the other line of the Sector I find that it doth croffe it both in B and D.

Or, (if the lines be given in meafure) $A \subset 75$, and CD 35 ; I may take 35 out of the line of lines and fetting one foote in 75,1 fhall find the other foote to croffe the other line of the Sector, both at 4.4 (anfwerable to $A \mathcal{B}$) and at 100 (anfwerable to $A D$.)

So that it is uncertaine whither the fide required be $: A B$ or $A D$, onely it may be judged by theangle- For if the inward angle where they croffe be obtufe, the fide required is the leffer; if it be acute, it is the greater.

13 To find a fide by having the angles, and one of the other fides given.

Take the fide given, and turne it into the parallell fine of his oppofite angle; fo the parallell lines of the other angle thall be the oppofite fides $r \in q u i r e d$.

As if in the triangle $A B C$, having the fide $A D$, and knowing the angle $C A B$ to be $16 . g r_{0} 16^{\prime}$, and the angle $A B C$ to be 143.8^{\prime}, it were required, to find the two other fides, $A C$, and $B C$.

The three angles of a right-lined Triangle, are alwayes equall to 180 Gr. Wherefore, 1 adde 16 Gr. 16^{\prime} into 143 .gr. 8^{\prime}. and by the remainder to $180 G r$. find the third angle $A C B$ oppofite to the knowne fide $A B$, to be $20 \mathrm{gr} .36^{\prime}$ Then, I take the fide $A B$, and make is a parall cil Gne of 20. er. 36^{\prime}.

So, his parallell fine of 16.16^{\prime} will be the fide $B C_{\text {; }}$ and the Parallell fine of $1.43 .8^{\prime}$ will be the fide e \mathcal{C}.

Or, if meafuring the fide $A B$ I find it to be 44 ; I may take 44 parts, ether out of the line of lines, or out of any other fcale of equall parts, and make it a Parallell fine, of 20 gr 36^{\prime}. So his parallell fine of $16 . \mathrm{gr}$. 16^{\prime} meafured in the fame Scale, will give 35 for the length of the fide $B C$: and the parallell fine of 36 gr .5 2' $^{\prime}$ will give 75 , for the length of the other fide $A C$.

When the angle comes to be above 90 gr ; the fine of 80 gr ; doth fand for a fine of 100 gr : and the fine of 70 gr . forafine of wio Gr . and fo the reft; for chofe, which are their complements to 180 . degrees.

14 To fisd the proportion of the fide by baving the three axgles

Takethe laterall fines of the angles, and meafure them in the line oflines. For the numbers belonging to thofe lines do givethe proportion of the fides.

Thus, in the two equi-angle triangles $A E C, A G E$, if you sake the laterall fine of 90 gr . for the right angle at E and G , and meafure it in the line of lines, you halll find it to be voo. Then take thelaterall fine of 16 Gr . 16 for the common angle at A, you thall findit to be 28. Take the laterall fine of 73 $g^{r}, 44^{\prime}$ for the third angle at C and F, you hall find it to 95. Such therefore is the proportion of the fides.

As 100.96. 28. So are 75. 72. 21.

15 To find ans angle by knowing the Ibreefides.

Let the two containing fides be layd on the lines of the Sector, from the center, one on one line, and the other on the other; and let the third fide, which is oppofite to the angle
required, be fitted over in their termes: fo thall the Seefor be opened in thofe lines to the quantitie of the angle required. The quantitie of this angle is found as in Cap: 2 Prop. 80
Thus having the 3 fides of the triangle $A \subset D$, to find the angle at A. I take the 2 conteining fides $A D, A C$ and tranffer them with my compaffes into the lines of Lines: where I fiud the one to reach from the center, to 72 ; the other, to 54.

Then I take CD, (the fide oppofite to the angle at A) and fit that over betweene 72 and 54°

Or if the 3 fides be given in meafure A D, 100; AC 75: C D 35: I might take 35 for the fide C D out of the line of Limes, and fet that over from 100 to 75 . This don I take the diftance betweene 50 and 50 and meafuring it in the line of Sines 1 find it to be about about $8 \mathrm{gr} .8^{\prime}$. you double whereof is $16 \mathrm{gr} .16^{\circ}$ the angle required.

16 To finde an angle by bavigg two fides. axdone adiacent ongle.

Firf take out the fide oppofite to the angle given, and laying it on both fides of the Sector, fo as they meete in the center, marke how far it extendeth; then take out the lated rall fine of the angle, and to it open the Sector in the termes of the firt fide : this done, take out the other fide given, and place italfo on the fame lines of the Sector from the centers for the parallells taken in the termes of this fide, thall be the Gine of the angle oppofite to the fecond fide.

Or take out the fide oppofite to the angle given, and make it a parallell fine of that angle ; then take the other fide given and carrie it parallell to the former: till it flay in like fines: fo they fhall give the quantitie of the angle oppofite to the recond fide.

Thus in the triangle $A C D$, knowing two fides $A C, C D$ with the angle C A D oppofite to the fide C D, you may find the angle A D Coppofite to the other knowne Gide $A C$, to be abour $3^{6} \mathrm{gr}: \mathrm{sz}^{3}$:

Wefolution of right line Triaxgles:

${ }_{17}$ Tofind anangle by baving two fides, and the angle constaxsed by them.

flift find the third fide by the Ir. Propo and then the and: gles may be found by the s . or 16 . Prop.

For obfervat on of angie, the Sector may have fights fet on the inoviable foore; io that by looking through them, the edges of the Sector may be applicd to the fides of the angle.

For meafuring of the fides of leffer triangles, any fcale may lufice, ether of feete, or inches, or leffer parts. Bur for greater triangles, efpecially for plotting of grounds; I hold it fit to ufe a chaine of foure perches in length, each perch divided into 25 , and the whole chaine an hunded links, wherein, if the whole chaime be (according to $16 \frac{1}{2}$ foot in 2 perch) 66 foote (that is, 792 inches) each feverall link will be 7 inches and ${ }^{\text {? }}$

If (according to 18. in the perch) the whole chaine be 72 feet in length (that is, 864 inches) then, each feverall link will be 8 inches and $\frac{64}{160}$

For fo the length being multiplied into the bredth, the five laft figures give the content in roods and perches by this Table;the other figures toward the left hand, doe fhew the number of acres directly.

As in a long fquare, where the length is 24 chaines $\frac{1}{2}$ the biredth 13 . chaines $-\frac{1}{2}$, the ufuall way is, to refolve the chaines into perches: So the length is 97 perches and the bredth 34 perches. Thefe multiplied one into the other make 5238 fquare perches and thofe (divided by 160) give 32 . Acres, 2 roods, and 38 percties for the content requiied.

$\begin{array}{\|l\|l\|l\|} \hline \frac{R}{100000} & \frac{P}{4} & \frac{0}{0} \\ \hline \end{array}$	
90000	
80000 3	
70000	232
60000	
50000 40000	
300001	
$10000-120$	
9375 8750 15 14	
8125	
7500 6875 681 18 18	
62505625	
5000	
4375	
3750	
3125 -	
2500	4
1875	3
1250	
625	

Put

Bat, reckoning by chaines and linkes, the length is 24 ch : $2 ; \mathrm{lin}$. the bred th 13 ch . 50 links. There multiplied one into the other make $32,7375^{\circ}$ fquare linkes. Then, cutting of the 5 laft figures, I find 32. Acres 73750 lin.fuch as an 100000 do make an acre. Of which 70000 are equall to two roods 32 perches : and the reft 3750 equall to 6 perches more (as appeareth by this table.) So, the whole con:ent is $\mathbf{3}^{2}$ acres, 2 . soods, 3^{8} perches, as before.

CHAP. V:

Of the refolution offphericall Triangles:

FOr our practife in fphrricall triangle, let \mathscr{A} be the equio noctiall point, $A B$ an arke of the ecliptique repretenting the longitude of the Sunne in the begmaing of σ_{3} $B C$ an arke of the declination from the Sunne to the equator, and $A C$ anarke of the equator reprefenting the right arcenfion.

Let B Dbean arke of the horizon reprefenting the am: plitnde
plitude of the Sines rifing from the Eat, and $B E$ an arks of the horizon for his fating from the Weft: fo DC shall be the difference of afcenfion, and $C \mathcal{E}$ the difference of defcenfrom; AD the obliqueafcenfion, and $A E$ the oblique dee feenfion of the fame place of the Sane in our latitude as Oxford of 5 g gr .45 mm . whole complement 38 gr .15 mm . is the angle at E and D. The triangles $A C B, D C B, E C B$, are rectangle in C :the other $A D B, A \in B$, confift every way, of oblique angles.

Or to fit an example hearer to the latitude of London. Le se $Z \subset S$ reprefent the zenith pole and Sun, Z P being $38 G r$. 30 m , the complement of the latitude, $P S 70$ Gr. the complex. men: of tic declination, and $\mathrm{ZS} 4 \otimes \mathrm{Gr}$. the complement of the Suns altitude. The angle at Z hall thew the azimuth, and the angle at P, the houre of the day from the meridian. Then if from Z to P. S we let dowse a perpendicular $Z R$, we hall reduce the oblique triangle into two rectangle triangles ZR $P, Z R S$. Or if from S to $Z P$ we let dowie a perpendicular $S \mathcal{M}$, we foal reduce the fame $Z P$ into two other triangles, $S M Z, S \subset M P$, rectangle at M : whatsoever is fail
of anj̄ of thefe triangles, the fame holdeth for all othort tri \ddagger angles in the like cafes.

For the refolurion of each of thefe, there be feverall wayes? onely chufe thofe which are fitert for the Sefor, wher. in if that be remembred which before is the wed in the g nerall - \int of the Sector concerning laterall and parallell encrance, it may fuffice onely to fet downe the propofition of the three parts given to the fourth required, and fo I fhew filt by the pres alone.

In a rectangle triangle.

I Tofixde afide by knowing the bafe, and the angle appofite to the required jide.

As the Radius

 is to the fine of the bafe: So the fine of the oppofite angle to the fine of the fide required.As in the rectangle $\mathcal{A} C B$, having the bare $\mathcal{A} B$, the place of the Sunne 30 gr . fron the Equinootiall point, and the angle \mathcal{B} © \mathcal{A} C of 23 gr .30 m . hhe greateft declination, if it wererequired to find the fide B C the declination of the Sunne.

Take either the la erall fine of 23 gr .30 mm . and make it a parallell Radius; lo the parallell fine of 30 gr . Laken and meafured in the fide of the Sector, Thall give the fide required II $\mathrm{gr}_{0} 30 \mathrm{~m}$. Or take the fine of 30 gr . and make it a parallell Radius; fo the parallell fine of $2 ; \mathrm{gr} .30 \mathrm{~m}$.taken and meafured in the laterall fines, fhall be it gr^{r}. 30 ms .as before.

So in the triangle Z P S having Z P 38 Ir. 30 ms . and the angle P;igr 34 miven, we hall find the perpendicular $Z R$ to be 19 gr .1 m , or having $P S 70 \mathrm{gr}$, and the faid angle P 31 gr. 34 ms. given, we may fide the perpendicular $\$ M$ to be 29 gr .28 m .

> 2 To finde a fode by kxowing tbe bafe and the olber ficic.

As the fung of the complenent of the fide given
is to the Radius:
So the fine of the complement of the bare
to the frae of the complement of the fide required.
So in the rectangle $A C B$, having $A B 30 \mathrm{gr}$.and $B C 11 \mathrm{gr}$: 30 m . given, the fide $A C$ will be found $27 . \mathrm{gr} .54 \mathrm{~m}$.

Or in the rectangle $Z R P$ having Z P $38 g r .30 \mathrm{~mm}$. and $Z R$ 59 gr .1 kr , given, the fide $R P$ will be found 34 gr .7 mm .

3 Io find a fide by knowing the two oblique angles:

As the fine of either angle
to the fine of the co:uplement of the other angle ${ }^{-}$:
So is the Radius
to the fine of the complement of the fide oppofite
to the lecond angle.
So in the rect ingle $A C B$, having' $C A B$ for the firt angle $23 \mathrm{gr}, 30 \mathrm{~mm}$ and $A B C$ for the fecond 69 gr .22 ma , the fide $A C$. will be found 27 gr .54 ms . Or making $A B C$ the firlt angle, and $C_{i} A B$ the fecond, the fide $B C$ will be found $1 \times g r .30$ mo.

4 To finde the bafe by knowing both tbe fides.

As the Radius

to the fine of the complement of the one fide : So the fine of the complement of the other fide; to the fine of the complement of the bale required.
So in the regangle $A C B$ having $A C^{27}$ gr. $54 m . \& B C$: $3: \mathrm{gr} .30 \mathrm{~m}$. the bafe $\mathcal{A}: B$ will be found 30 gr .
> s Io firde the bafe by knowing the one fide, ardibe asgle oppogite to that fide.

As the fine of the angie given, to the fine of the fide given?
So is the Radius

$$
\mathrm{N}_{3}
$$

to the fine of the bafe required.
So in the rectangle $B C D$, knowing the latitute and the declination, we may find the amplitude; as having B C the Ede of the declination ingr. 30 m . and B DC the angle of the complement of the latitude 38 gr . 15 m . the bafe BD Which is the amplitude, will be found to be 18 gr .47 m .

6 To find an angle by the other oblique angle, and bthe. fide oppofite to the inquired apgle.

As the Radius
to the fine of the complement of the fide:
So the fine of the angle given,
to the fine of the complement of the angle required.
So in the rectangle $A C B$, having the angle $B A C 23.57:$ go m. and the fide A C 27 gr .54 m , the angle A B C will be fourd $69 \mathrm{gr}_{\mathrm{g}} 21 \mathrm{~m}$.
> z To finde an angle by the otber obliqueangle, and the fide oppofite to the angle given.

As the fine of the complement of the fide
to the fine of the complement of the angle given:
So is the Radius
to the fane of the angle r quired.
So in the rectangle, A C B B having B A C 23 gr .30 m . and * C 11 gr .30 m . the ang'e A B C will be found $69 \mathrm{gr}_{\mathrm{g}} 21 \mathrm{~mm}$.

> 8 To finde an angle by the bafe, and tho fide oppofite to the inquired angle.

As the fine of the bare is to the Radius:
So the fine of the fide
to the fine ofth angle required.
So in the rettangle B C D, having BD 18 gr .47 and $B C i n g r, 30 \mathrm{~m}$. the angle $B \mathrm{D}$ C will be found 38 gr .15 m . There

Thefe eight Propofitions have been wroughe by the fines alone; thofe which follow require joynt helpe of the taingent.

And forafmuch as the taigent could not well be extended b:yond 63 gr .30 m . I Thall fet downe two wayes for the refolution of each Propolition; if the one will not hold, the 0 ther may.

9 To find a fide by having the other fide, and the angle oppofite to the inguired fide.

i. As the Radius
to the fine of the fide given:
So the tangent of the angle,
to tangent of the fide required:
2 As the fine of the fide given,
is to the Radius:
So the tangent of the complement of the angle,
to the tangent of the complement of the fide required.
So in the rectangle A C B , having the fide A C $27 \mathcal{G r}^{\prime} 54$ m^{m}, and the angle $B A C 2 \xi G r, 30 m$. the fide $B C$ will be found to be $11 \mathrm{gr}, 30 \mathrm{~m}$ 。

1o To find, ajade by baving the other fade, diut the axgle sext to the inquircd gide.

- As the tangent of the angle,
to the tangent of the fide given:
So is the Radius
to the fine of the fide required.
2 As the tangent of the complement of the fide,
to the tangent of the complement of the angle
So is the Radius
to the fine of the fide required.

This and the like, where the tangent ftandeth in the firt place, are beft wrought by parakell entrance. And to in the rectangle $B C D$, having $B C$ the fide of declination II gr. 30 m . and BD © the angle of the complement of the latitude 38 Gr. 15 m. the fide D C, which is the aicenfionall difference, will be found 14 Gr .57 m .

By the alcenfionall difference is given the time of the Sunnes rifing and fetting, and length of the day; allowing an houre for each 15 gr . and 4 minutes of times for each feverall degree. As in the example the difference betweene the Sunnes afcenfion in a right fphere, which is alwayes at Cof the clocke, and his afcenfion in our latitude being 14 gr , .57 m . it fheweth that the Sunue rifeth very neare an houre before 6 , becaule of the Northerne declination; or atter $\sigma, 4\}$ the Sunne be declining to the Southward.

II To find a fide by knowing the bafe, and the angle adiacent wext to the inguired fide.

- Asthe Radius

to the fine of the complement of the angle: So is the tangent of the bale,
to the tangent of the fide required.

- A s the fine of the complement of the angle is to the Radius:
So the tangent of the complement of the bafe,
to the tangent of the complement of the fide required.
So in the rectangle ACB, knowing the place of the Sun from the next equinotiall poine, and the angle of his greateft declination, we may find his right afcenfion: viz. the bafe A B 30 gr . and the argle B:AC 23 gr. jom. being given, the right afcenfion $A C$ will be found $27 \mathrm{gr}$.54 mm .

As the tangent of the one angle;
to the tangent of the complemenz of the other angle:
So is the Radius
to the fine of the complement of the bafe.
So in the rectangle $A C B$, having $B A C_{23} \mathrm{gr} .30 \mathrm{~m}$. and A B C $\delta 9 \mathrm{gr}: \mathbf{2 2} \mathrm{m}$. the bafe $A B$ will be found 30 gr .

13 To.finde the bafe, by knowing one of the fides, and tbe angle adiacent next that fide.

1 As the Radius
is to the fine of the complement of the angle:
So the cangent of the complement of the fide, to the tangent of the complement of the bafe:

2 As the fine of the complement of the angle is to the Radius
So the tangent of the fide given, to the tangent of the bale required.

So in the rectangle $A C B$, having $A C 27 \mathrm{gr} .54 \mathrm{~m}$. and Be $\mathcal{B} C .23 \mathrm{gr} ; 30 \mathrm{~m}$. the bafe $A B$ will be found $30 \mathrm{gr} ; 0 \mathrm{~m}$.

14 To fird an angle, by knowing both tbe fides:
1 As the Radius
is to the fine of the fide next the inquired angle: So the tangent of the complement of the oppofite fide, to the tangent of the complement of the angle required.

* As the fine of the fide next the inquired angle, is to the Radius:
So the tangent of the oppofite fide, to the tangent of the angle required.
So in the rectangle A C B, having $A \subset 27 \mathrm{gr}, 54 \mathrm{~m}$. and B C II gr .30 m .the angle at A will be found 23 gr .30 m .and the angle at B 69 gr .21 mm .

Is To finde an angle, by knowing the bafe, and the fide next adiacent to the inquired angle.

I. As the tangent of the complement of the fide, to the tangent of the complement of the bale: So is the Radius
to the fine of the complement of the angle required.

- As the tangent of the bafe, to the tangent of the fide:
So is the Radius,
to the fine of the complement of the angle required:
So in the rectangle BCD ; having the bafe BD 18 gr .47 mad and the fide $B C 11 \mathrm{gr} .30 \mathrm{~m}$. the angle D B C between them will be found 53 gr .15 m .

16 To find ax angle, by knowing the other. oblique angle; and the bafe.

I As the Radius,
to the fine of the complement of the bafe:
© So the tangent of the angle given, to the tangent of the complement of the angle required:

2 As the fine of the complement of the bafe,
is to the Radiust
So the tangent of the complement of the angle given, to the tangent of the angle required.
F. So in the rectangle A C B; having the angle at $A \cdot 23$ gr: 30 m . and the bafe A B 30 gr . the angle A BC will be found $69 \mathrm{gr} 22 m.$.

Thefe fixteen cafes are all that can fall out in a rectangle: sriangle: thofe which follow do hold.

Refolution of Spharicallirviangles:

In any Shicricall triangle wfat foever

17 To find a fade oppofite to an angle given, by knowing. one \int ide, and tryo angles, wherof one is ap.
pofite to the given fide, the other to the fide required.
. As the fine of the angle oppofice to the fide given, is to the fine of that fidegiven:
So the fine of the angle oppofite to the fide required, to the fine of the fide required.
So in the triangle $A B$, having the place of the Sunne, the latitude, and the greateft declination, we may finde the amplitude. As having A B 30 gr . B A E 23 gr .30 miand AEB 38 gr .15 m . the fide B E which is the amplitude, will be found 18 gr .47 m .
$1 s$ To finde an angle oppofite to a jide given, by baving one angle and tupo fides; the one oppofite to.
the given aingle, the otber to the angle required.
As the fine of the fide oppofite to the angle given, is to the fine of that angle given:
So the fine of the fide oppofite to the ang!e requiret,
to the fine of the angle reguired.
So in the riangle $Z P S$, having the azimuth, and altirude, and declination, we may find the houre of the day. As having $P Z S 130 \cdot \mathrm{gr}^{3} \mathrm{~m}_{0} P \cdot S_{70 \mathrm{gr} \text {. and } Z} S_{40 \mathrm{gr}}$ the angle $Z P S$, which meweth the houre from the meridian thall be found $3 \mathrm{Igr}, 34 \mathrm{~m}$.

19 To find as angle by knowing the three fodes.
This propoftion is mof ufefull, but mof difficult of all
02

- 0 krs formed feverall wayes.

I According to Regiomontanus and others.
As the fine of the leffer fide next the angle required,
to th: differenice of the verfed fines of the bafe and diffe: So is the Radius (rence of the fides:
to a fourth proportionall.
Then as the fine of the greater fide next the angle required is to that fourth proportionall:
So is the Radius
to the verfed fine of the angle required.
So in the triangle Z P S S, having the fide p S the coplemene of the declination 70 gr .0 m , the fide $\mathrm{Z} P$ the complement of the latitude $38 \mathrm{gr} ; 30 \mathrm{~m}$, and the bate Z S the complement of the altitude 40 gr . the angle of the houre of the day $\mathrm{Z} P S$ will be found 3 gr . 34 m . which is 2 h .6 m . from the meridian.
For the bafe being 40 gr .0 m and the difference of the fides 38 gr .30 m . and $70 \mathrm{gr.0} \mathrm{~m}$. being 31 gr .30 m . the difference of their verfed fines will be the fame with the diftance between the right fine of 50 gr and 58 gr .30 m . This difference I take out, and make it a parallell fine of the leffer fide 38 gr .30 m . fo the parallell Radius will be the fourth proportionall. Then coming to the fecund operation, I make this fourth propor tionall paraltell fine of the greater fide of 70 gr .0 ms and take out his parallell Radius. For this meafured from 90 gr .toward the center, will be the verfed fine of 3 gr .34 m .

In the like fort in the fame triangle $Z P S$, having the fame complements giuen, the angle P Z S which is the azimuth from the North pare of the meridian, will be found 130 gr . 3 m . For here the bafe oppofite to the angle required being 70 gr . and the difference of the fides 38 gr .30 m . and 40 gr . being 1 gr .30 m . the difference of their verfed fines will be the lame with the diflance betweene the right fines of 20 gr . and 88 gr .30 m . This difference I take, and make it a parallell fine of the leffer fide 38 gr 30 m . fo the parallell Radius will be the fourth proportionall. Then coming to the fecond o'peration, I make this tourth proportionall a parallell fine of
the greater fide 40 gr . and take out his parallell Radius. For this mealured from 90 gr . beyond the center in the lines of fines ftratched forth at their full length, will be the verfed five Of 130 gr .3 m .
2 I may finde anangle by knowing three fides, by that which I have elfewhere demonftrated upon Barth. Piti/cus, and that at one operation in this manner.

As the fine of the greater fide

is to the fecant of the complement of the other fide: So the difference of fines of the complement of the bafe, and the arke compounded of the leffer fide with complement of the greater,
to the verfed fine of the angle required:
So in the fame triangle $Z P S$, having the fame complements given, the angle at P, which hewerh the houre from the meridian, will be found as before 3 g gr. 34 mm .

For the fides being 38 gr .30 m and 70 gr .0 m . I take the fecant of the complement of $38 \mathrm{gr}, 30 \mathrm{~m}$. and make it a parallell fine of 70 gr ; then keeping the Sector at this angle, I confider that the complement of 70 gr . being $20 \mathrm{gr}^{\text {r }}$ added unto 38 gr 30 m : the compounded fide (which is here the meridian altitude) will be 58 gr .30 m ; and that the bafe being 40 gr , the difference of fines of the compounded fide and the complement of the bale will be (as before) the diftance betweene the fines of 50 gr . and s 9 gr .30 m . Wherefore I take out this difference, and lay ir on both the lines of fires from the center : fo the parallell taken in the termes of this difference, and m zafured from $90 \mathrm{gr}^{\text {r. toward the center, }}$ doth give the verfed fine of 31 gr .34 m .

This exa nple, of finding the houre of the day might 0 therwife have been prapofed in thefe terines.

As the fine of the complement of the declination;
is to the fecant of the Latitu l:
So the diference between the fine of the alcituds prop. 0° Fed, and the fine of the meridian Altitude.

Then the Latitude being $5^{1} \mathrm{~g} \cdot 30^{\prime}$, the declination 20 ' gx . northward, and the Altitude sogro the worke would be the fame as before.

The other angles $P Z S, P S Z$, may be found in the fame fort; buthaving the fides and one angle, it will be fooner done by that which we fhewed before in the 18 Prope .

20 Tofind a fide by knowing the three angles.

If for the greater angle we take his complement to 180 ge , the angles fhall be turn-dinto fides, and the fides into an ${ }^{\circ}$ gles, \& the operation fhall be the fame, as in the former $P_{\text {rop }}$ -

As m the triangle Z P S; havirg the angle Z PS 3i Gr. $34^{\prime \prime}$ ZSP $30 \mathrm{gr} .28^{\prime}$ and $\mathrm{PZS} 130 \mathrm{gr} \cdot 3^{\prime}$, I wou'd take the greater angle, of $130 \mathrm{gr} \cdot 3^{\prime}$. out of 180 gr , and there remaine 49 gr . 57^{\prime}.: Then as if I hada Triangle of 3 knowne fides, one of s $1 . g r .34^{\prime}$, another of $30 \mathrm{gr} .20^{\prime}$ and a third of $49 \mathrm{gr} .57^{\prime}$, I would feeke the angle oppofite to one of thefe fides, by the laft Prop. So the angle which is thus found, would be the fide which is liere reguired.

> 2 I Io find a fide, by having the otber two fides, aud the aiggle comprebisded.

This propofition being the converfe of the nineteenth, may be wrought accordingly; but the beft way both for it and thofe which follow, is to refolve them into two refangles, by letting downe a perpendicular, as was fhewed in the firft Prop.

So in the triangle ZPS, having Z P the complement of the latiiude, and PS the complement of the declination, with Z i Sthe agle of the houre from the meridian, we may find Z S the complement of the altitude of the Sunne.

For having let downe the pergendicular $\underline{Z} R$ by the firt

Prop. We bave two triangles, $Z R \mathrm{P}, Z R S$, both rectangle at R. Then may we firde the fide $P R$, either by the fecond, or tenth, or eleventh Prop. which taken out of $\mathrm{P} S$, leaveth the Gde $R S$: with his $R S$ and $Z R$ we may find the bale Z by the fourth Prop.

Or having let downe the perpendicular SM, we have two rectangle triangles $S M Z, S M P$. Then may we find $M P$, from which if we take $Z P$, there remaineth $M Z$. but with $M Z$ and $S . M$, we may find the bale $Z S$.

22 Tofind afode, by"having the other two fides, and oneof the angles next the inquired fide.
So in the triangle $Z P S$. having $Z \mathcal{P}$ the complement of the latitude, and $P S$ the complement of the declination, with $P Z$. Sthe angle of the azimuth, we may finde $Z S$ the complement of the altitude of the Sunne.

For having $Z P$, and the angle at Z, we may to $S Z$ produced, let downe a perpendicular $P V$. Then we have two reCangle triangles, $\mathrm{P}^{\prime} \vee Z, \mathrm{P} V S$, wherein if we find the fides $V \cdot Z . V S$, and take the one out of the other, there will remale: the fide required $Z S$.

23 To firde the fide, by baving one fide, assd tie two angles next the inquired fide.

So in the triangle A B D, having A B the place of the funs. and $B, A D$ the angle of che greateft declination, and $A D B$ the angle of the equator with the horizon, wemay find $\because A D$. the oblique afcention.

For having let downe $B C$ the perpendicnlar of declina:tion, we have two rectangles triangles, $\mathcal{A} C B, D \mathcal{D}^{B}$. Then may we find $A C$ the right afcention, and $D C$ theafcentionall difference; and comparing the one with the os ther, there remaineth $\mathcal{A} \mathcal{D}_{2}$.

24. Tofinda fide, by baving two angles, and the fide inalofed byithem.

So in the triangle $Z P S$, having the angles at Z and P, with the fide intercepted $Z \mathrm{P}$, we may find the fide P.S. For having let downe the perpendicular $P \mathbf{V}$, we have two rectangles $P \vee Z, P \vee S$. Then may we find the angle $V P Z$, either by the feventh, or fifteenth or fixteenth prop. which added to Z P S, maketh the angle V P S, with this V P S. and P V, we may find the b:fe P S, according to the 13 Prop.

25 To findas angle by having the osher two angles and the . $i d e$ inclofed by them.

So in the triangle $Z P S$, having the angles at Z and P, with the fide intercepted $Z P$, we may finde the other angle $Z S \mathrm{P}$. For having let downe the perpendicular Z R , we have two rectangles Z R P, Z R S. Then may we finde the angle P Z R by the fixteenth Prop. and that compared with $\mathrm{P} Z S$, leaveth the angle R Z S : with this $R Z S$ and $Z R$ we may find the angle required ZoS R, according to the fixth Propofition.

> 26 To finde as angle, by bavisg the other two angles; asd ore of the jodes next the inquired angle.

So in the triangle ABD, having the angles at A and D, with the fide $A B$, we may find the angle $A B D$. For having let downe the perpendicular $B C$, we have two rectangles, $A C B, D C B$. Then may we find the angles $A B C, D B C$, and take $D B C$ out of $A B C$; for fo there remaineth the an: gle required ABD.

> 27 To find as angle, by knowing two fides, and the angle coxtained by them.

So int'e tringl: $Z \mathrm{P} S$, having the fides $Z \mathrm{P}, \mathrm{PS}$, with the ante converteded Z ? S, we may fiad the angle $P Z S$ 。 Fo havigle j, whe h per end car ar S a we liave two retanges $M Z, S M$. Then mywe fiod the file $M P$, and rakting Z Pon of $M P$, theie remineth $M Z_{i}$ wich this carzand the pervendicular MS, we may find the angle $M Z \mathrm{~S}$, by the fourtecnth Prop. This angle $M Z S$, taken out 180 gr . there remaineth $P \mathrm{Z}$ S.

> 28 To finde an angle by knowing the two fides nexti in aisd one of the otber aingles.

So in the triangle $Z P S$, having the fides $Z P$ and $P S_{D}$ with the angle $\mathrm{P} Z \mathrm{~S}$, we may find the angle $Z \mathrm{P} S$, For having let downe the perpendicular $P V$, we have two rectane gles $\mathrm{P} V Z, \mathrm{P} \vee \delta$. Then may we fird the angles $V \mathrm{P} Z, V \mathrm{PS}$; and taking $V \mathrm{P}$ Z out of $V \mathrm{P} S$, there remainech Z P S which was required.

Thefe 28 cafes are all that can fall out in any fphxricall triangle: ifany do no prefently underftand them, let then once more readeover the ule of the globes; and they thati \&oone become cafie unto them.

CHAP VL.

Of the ofe of the Meridian line in Navigation.

THe Meridian line is here fet on the fide of the Semor Atreched forth at full length, on the fame plane with the line of tines and Solids, and is diuided unequally toward $87 \mathrm{gr}_{0}^{\circ}$
(whereof 70 gr are about one halfe) in fuch fort as the Me: sidian in the Chart of Wercators proiection. The vfe of it may be:

I. To divide a \int ea Cbart according to proiection.

If a degree of the xquator on the fea-chart be equall to the hundred pars of the line of lines in the Sector, the degrees of the CHersidian vpon the SeCtor, fhall give the like degrees vpon the fea-chart: if otherwife they be unequall, then may the meridians of the fea-chart be divided in fuch fort as the line of Meridians is divided on the Sector, by that which we Chewed before in the 8 prop. of the line of lines.

But to avoid error, I have here fet downe a Table, where by the Meridian line may be divided out of the degrees of the xquator, fuppofing each degree in the Fquator, to be fubdivided into a thoufand parts. By which Table, and the v fuall Table of Sines, Tangents and Secants, the proportions following may be alfo refolved arithmetically. For the manner of divifion, let the æquator be drawne, and divided, and croffed with parallell meridians, as in the common fea-chart : chen looke into the Table, and let the diftance betweene the Equator and:40 $\mathrm{gr}^{\text {r }}$ in the meridian, from the xquator, be equall to 43 gr .71 I parts of the Equator; let 50 gr . in the meridian from the xquator, be equall to 57 gr .909 parts of the equator ; and fo in the reft.

The making of this Table is, by addition of Secants. For the Parallells of latitudes being leffe then Requator or Meridian, in fuch proportion, as the Radius is to the Secant of the Parallell. For example, the Parallell of 60 degrees of Latitude is leffe then the Equator (and confequently, each degree of this Paralloll of 60 degrees leffe then a degree of the xquator, or Meridian) in fuch proportion as 100000 the Radims hath unto 200000 the Secant of 60 degrees.

of the cheridian lize.

[17)

8

If it be a particular Charr, I wond firlt draw the line e \mathcal{B} ferving for the frot ineridianand coife it with 2 perpendiculars $B C$ and $A D$, the one at the upper end, th. other at the lower end of the Chart, which may ferve for the extreme Paiaillls of Latitude.

I hen confidering at what Latitude the Chart is to be gion and end, and that this Chart entended for the latitude of thefe parts, is to begin at 50 gr . and fo end at 55 gr . I looke into the Tab'e, and find chat so $g r$. of latitude mult be drawne at 57 gr. 909 parts; and 55 gr . of lititude at 66 gr .134 parts from the Equator; and that the Meridia's diftance betweene the Parallello 50 gr and 55.5 gr of Latitude mult be equall 108 gr . 22 s parts of the Equatur. Whereupon I take the line $A B$ out of the Meridian ine and dmininith it in fuch proportion 2; 8.225 hathunto 100 per 3 Prop. Lim. and with that ex-- ten of the Compaffes : divid che two extreme Parallells of Lan udeinto tquall degreés, and through each degree draw meridiaslines paralell to the fi ft meridian, noting thena with I. 2. 3. 4. \&ce and isen, I fubdivide either one or all of thr.fedeg ees inco so parts, and (if I may) eachtenth pare inte sopares mare, bu: hewfoever, I fuppofe each degree. to be fubdivided info roso parts.

Themeridians beng drawne, I come to the parallells of: latitude, b gin ing a: 50 gr .

And fioding in the Table, thit the diftance between the Aquator and sogr. in the merid an Mou'd be equill to 57 \&r-909 partsiathe E juator and his p rallells I may fuppofe the lowett Paralle'l to b 57 gr . from the Equaror: So the diftance betweent is lowelt Parallell and the Parallell of 50 $g r$. will be onel" 909 parts. Wherefore I take the le 909 odd parts, out of the degree that I divided before, and pick them downe inthe twoutermoft meridians from the loweft Pa rallell upward:, and there d.aw the Parallell of 50 gr . of fatitude.

In like manner, hecaufe I find by the table that the diftance betweene the Equator and $5 \mathrm{~s} \boldsymbol{\mathrm { gr }}$. in the meridian is 59 gr . 48.1 parts of the Aquator, I abate the former 57 gI and

Q 2

The nje of the Meridian line"

there remaine i gr. 481 parts for the diftance betweene the loweft Parallell, and this Parallell of 5 : wherefore I take thefe 2 degrees 48 t parts out of the line betore divided and pricke them downe in the two uttermoft Meridians (as before) from the loweft Parallell upward, and there draw. the Parallell of $\boldsymbol{5 1}$ degrees of latitude.
If any defire to have his chart agree with his Sector, he may make each degree of longitude xquall to the tenth part of the line of lines, and divide the meridian of his chart out out of the Sector: fo thall each degree of the chart, be ten times as large as the like degree on the Sector, and the worke be eafie from the one to the other.

Or he may divide the Meridian of his chart by the fide of a Protractor, fuch as is commonly ufed by furveiors of land, and is here reprefented by $A C D E$: wherein the outward part of the femiciclele $A B C$ is divided x qually into 180 gr 。 The inward part xqually into $I 6$ Rumbs,and each Rumb fubdivided into 4 .
The lines $C \mathcal{D}, \mathcal{D} E, E A$ divided x qually according to the line of lines upon the Sector, or the Paralle lis upon the Chart. Onely the Diameter © C would be divided unequally by letting downe occult perpendicular lines up in it, from each degree in the femicircle which being done the intermediate part berweene the Rumbs and the Diameter may be all cut forth: and the back fide of the long fyuare may be filled with σ lines of chotds, or fcales of feverall prits in the inch,

So may the meridian be divided by the parts of the fide \boldsymbol{E} \mathcal{D}, the angles of each Runb may readily be pricked downe by the degrees in the Semicircle, and the line of chords and the other fcales may ferve to doe the like with more variety.

> 2 To find bow many learwes anfwer to one degree of longitude in every feverall latituale.

The Protractoos:

Place the figure page II 6 of the Sector:

In ailing by the compaffe, the courfe holds fometime upon a great circle, fonerime upon a parallel to the æquator; butmolt com noaly upsi crooked lines winding cowards one of the poles, which linesare well knowne by the name of Rumbs.

If the courfe hold upon a great circle, it is either North or South, uader fome meridia:t, or Ealt or Wift, under the x quator. And in thefe cales, every deqree requires an allo v ance of twentie leagues, every twentie leagues will make a degree difference in the failing : fo that here need no fur-ther precept then the rule of proportion in the Chapter of lixes.

But if the courfe hold Ealt or Weft, or any of the parallels to the æquator;

As the Radius

is to twenty leagues, the meafure of one degree at the xquator:
So the fine of the complement of the latitude
to the meafure of leagues anfwering to one degree in that latitude

Whersfore I take 20 leagues out of the line of lines, and make ic a parallell Radius, by fiting it over in the fines of 90 and $90:$ Ko his parallell line taken out of the complement of the laticude, and meafured in the line of lines, hall fhew the number ofleagues required,

Thas in the latitude of $18 . g r .1 .2 \mathrm{~m}$. we fhall find 19 leagues anfwering to one degree of longitude, and 18 leagues in the latitude of 25 gr .15 m , as in this Table.

This may be done more readily without opening the Sector, by doubling the fine of the complement of the latitude, as may appeare in the fane example.

It may alfo be done by the line of meridianes, either upon the Sefor, or upon the chart. For if
we open a paire of compaffis to the quantitie of une degree of longitude in the xquator, or one of his Paialetis and ineafure it in the meridin li e ferting one foote as much above the latitude gi ven, as the other fallech beneath it, fo that the la rituse may be in the rinddle betweene the feete of the com rafles, he number of lagues intercepted fhall be that which was requird.

But if the courfichold upon any of the rumbs, betweene a pa ailell of the æquator and the meridiail we are io confides (belides the quarter of the world to which we tead, which mult be alwayes κ nowne.)
Tine fiucnce of longitude at leaft in generall,
2 The diterence of latriude, a d that in paticu ar; 3 The rimb whereon the co rfe holds.
4 The difta ce npon the \boldsymbol{r} umb, which is the diftance, which we are here to confider, and is alwases 'o ne whar greater then the like diftance upon a grea er circle. And for thele firlt I hew in generall thisthird Prop.

3 To find bow mary leagnes do anf wer to one degree of luitinde ize cr cry feverall Rumb.

The seamans compaffe is commonly divided into 3^{2} points, the halle itro $\mathbf{1 6}$, he qua ter into 8 , which havet cir names of $\lll 6 \varepsilon, \chi<\varepsilon, \& c$ according to thole parts of the wordd to which they port. Aniwerable to thefe points are the Rumties "pon ther chart; each quartor divided into 8; each R ".sib $1 / g g^{r}$. 15^{\prime} diftant one from the orher. The firt Rumbe being that which is 11 gr. 15°. diftant from the Meridia ; The fecond 22 gr . 30^{\prime} the thard $33 \mathrm{gr} 45^{\prime}$ and fo the r if. Ard (ifthey have n ed of mallor piartrs) they fubdivide each Ramb inco ģuaters allowing 2 or. 48^{\prime}, to the firt
quarter $5 \mathrm{gr} .37^{\prime}$ to the balf, Rmmb \&ic. as in the a do owlig. As the is ef lie couplement of the runb trö \boldsymbol{c} meid an.
is to 2 , luagus the meafure of one dr gree a the med, dian:
So the ciathes
tothe la ues anfwering to one degree upon the Ruanb.
 North:ateude, it were required ho. v ma y lagues the fhip thould u :, berore it could owe to 5igr. of in mude, Becauferti is the thind?um'a d the inc ination the leof $33 \mathrm{gr} .45^{\prime} 1$ would tahe 20 leagues \&x.
Wher tore I tal.e 20 leagnes our ofthe line of liaes and onate it a pirallell fine o! 56 gr .15 the complement of he Rumb trom the neridia ; fo hi parallel Radius takena med fured in the live of lines, thall thew me 24 , for the number of cagues required.
and thus in the firl Rumb from th: meridian, we Ghall fi d 20 lgs 39 parts anfwering to one degree of la rrude and 2x lgs 65 parts in the iecoud Rtmb, \&.c. an in this Table, where we fubdivide each league into a hunded parts, and Shew befides what inclination the rumb hath to the meridian.

This may be done more readily with our opening the Sector, by doubling the fecant of the Rumbe, as may appeare in the fame example.
It may alfo be done upon the chart, if firft we draw the Rumb, then we take
the diftuce upon the Rum'S betweene two parallells, $8 \overrightarrow{8}$ mealure it in the meridian line, as farre above the greater la. titude as beneath the leffer. For fo the number of leagues in tercipted, fhall be that which was required.

For example : in the fecond chart Pag 97 I firft draw the δ Rumbs, from the interfection of the meridian with the Parallell of 50 gr . oflaritude, either by the which I have fhewed before inthe generall ufe offines Cap. 11 Prop. 10 or by help of theprotration lalt mentioned. For, laying the center of the Prutractor to the point of interfection, (which is to be the center of che Rumbs) and turning the diamerer of the protractor, untill it be parallell to the Meridians of the chare (which is then done, when the Meridians and Parallells in the chart fall under like divifions in the Protractor) I may make one pricke at $11 \mathrm{gr}, 15^{\prime}$ another, at $22 \mathrm{gr} .30^{\prime}$ in outward part of the femicircle, and fo the reft.

Or, having neither Sector nor Protractor 1 would have a line of chord, fet on the fide of the Ruler which I am to ufe from which 1 may take $\sigma 0 . g r$ and with that extent fetting one foote of the Compaffes in the former point of interfection, draw an occult arke of a circle, and therein pricke downe the former arkes from the Meridian as in cap. in Prop. 10. SO, thefe aries being pricked downe, by either of thefe wayes, the right lines drawne through the center and thofe prickes, hhall be the Rumbs required.

The Rumbes being drawne, I take the diftance betweene the Parallells of 50 and $5 \pm \mathrm{gr}$ upon $A C$, the third Rumb; and merfuring it in the Meridian line I find the compaffes to reach from about \div of a degree below the parallell of 50 , but $\frac{1}{10}$ above the parallell of 51 gr . intercepting $1, \mathrm{gr}$. $\frac{2}{6}$ or 24 leagues fuch as 20 make a degree.

Againe, I take the diftance upon the fame Rumbe between the Parallell of 54 and 55 gr . which I find to be fomewhat longer then the torme, diftance betweene the Parallells of 50 and 51; but meafuring it in the Meridian line according to the latitude of the Parallella I find but $1 \mathrm{gr}_{5}^{2} \frac{1}{-5}$ (or 24 leagues) as before for ahe number of leagues anfwering to one degree of

The Scale of Chordsand Rumbs.

pag. 120 Sectar:

Latitude upon this third Rumb.
And by the fame reation, I may finde the number of leagues anfiwering to a degree of Latitude upon the reft of the Rumbs agrecable to the Table.

This confidered in generall; I thew more particularly in twclue Prop. following, how of thefe foure'any two being givén, he other two may be found, both by Mercators chart and by this Sector.

1 Byone latitude Rumb and diftance, to find

 the defference of latitudes.As the Radius
to the fine of the comp'ement of the Ruib from the me So the diftance upontlie Rumb,
(ridians,
to the diffirenco ol latiudes.
I.ct the pace given be A in the latitude of $50 \mathrm{gr} . C$ in a grea e-la itude, but unowne the diftance upon the Rumb being 6 gr. beiweene them, and the Ruint the third fiom the mendian.

Fiift ; ta e 6 gr . from the dif nce upon the Rumb, out of the line of lines and make it a parallenl Kadius, by putting it over in the filu sor 90 and 90 . Then keeping the Sector at this angle, i take out the paralledl fine of $\dot{j} \sigma \dot{g} r .15 \mathrm{mz}$. which is the fine of the complement of the third Rumb from the meridian, and meaforing it in the line of lines, I find it to be $5 \mathrm{~g} r_{0}$ and fuch is the difference of latitude required.

Or. I may take out the fine of 56 gr .15 m . for the comple: ment of the thid Rumb from the meridian, and make it a parallell Radius; then keeping the Sector at this angle, I take 6 $g r$. for the diftance, either out of the line of lines, or any other fcale of equall parts, or elfe out of the meridian line, and lay it on both fides of the Sector from the center; either on the line of lines or fines: fo the parallell taken from the termes of this diltance, and meafuredia the fame fcale wherein the difance was meafured, fhall hew the difference of latitude to bes gr: as before.

R
Bus

But is horter dithaces, fuch as fall within the comparfe of a daies failigg, this w rise will h ild mich beter. As mas appeare by comparing the worke with the Tab'e following: where the numbers in th: fro ord fig ifie the leagues; thote in the fide, the Rumb; and the reft in the middle, the d ffe-: rence of latitude.

In the Chart let a meridian $\mathcal{A} B$ be drawne through A; and in A with $A B$ make an angle of the Rumb $\mathcal{B} A C$. Then open the compaffes, according to the latitude of the places, to $E F$ the quantite of $g r$ gr, in the meridian, transferring them into the Rumb from A to C and through C draw the paral$\operatorname{lell} B C$. croffing the meridian $A B$ in B : fo the degrees in the meridian from A to B_{2}, hall Ghew the difference of latitude to be 5 gr.

2 By the Rumb and both latitudes to find the diffance npow the Rumb.

As the fine of the complement of the Rumb from the merito is to the Radius:
$\left(\right.$ dian $_{2}$
So the difference oflatitades,
so the diftance upon the Rumb.
As if che placesgiven were A in the latitude of 50 gr . C in the laticude of $S S$ gro and the Rumb the third from the. meridian.
Here I may take, g r. for the difference of latitude out of the line oflizes, and put it over in the fine of $56 . \mathrm{gr}$. 15 m . for the complement of the third Ru ub from the meridian. Then. keeping the Sector, at this a agle, \mathbf{I} take out the parallell Radius, and meafuring it in the line of lines, I find it to be 6 gr . and fuch is the diftace upon the Runb, which was required.
Or I my take th: laterall R adius, and make it a paralldll fine of $\sigma \sigma g r$. is m. the complement of the Ruins from the meridian: then keeping the Sect r at this angle, I take $s \mathrm{gro}^{2}$ for the difference of lattitude, either out of the line of lines,

Grout of fome oth r fcale of equall parcs, and lay ir on boch fides of the Seitor trom he center, enther ons the tine of lines or of fires : fo the paral eil ahen from the teruis ot this difference, and meafin d in the lame icale with the difference, thall hew the diftance upon the Rumb to be 6 gr . or 120 liagues.

O: keeping the Sector at this ang'e, I may take the difference betwe ne 50 gr .and 55 gr .out of the Meridian ine and mealuring it in the $x q$ lator, I hall find it to be equall $\mathrm{e} \cap \mathrm{S} \% \mathrm{~g}_{\mathrm{o}}$. $22 p$. of the x guatur. Wherefore I ake the pardilell betweeis 822 and 822 out of the line of lines, and meauring it in the line of lizes I fhall find it to be 989; which thewe that according to this proje tion, thediftaice upon this third Ruanb, anfwerable to the turmer difference of latitudes,will be equal to 9 gr. 89 p . of the equator.

Or the Sector rem.ining at this angle, I may take the diffe。 rence berweene 50 gr and 55 gr . out of che Meridian line, and lay it from the center on borh fides of the Sector, eith r on the line of lines or of fines: fo the paralleli taken from the termes of this difference, fhall be the veryln 0 o diftance reguired, the fa ne wath $A C$ or $E F$ upon the chart; which may ferve for the better pricking downe of the diftance u on t e Rumb, without taking it forth of the CMeridian line as in the former Prop.

Or if the Rumb fall nearer to the xquator, that the laterall Radius cannot be fitted over in it, this propofition may be wrought by parallell entrance.

For if firit take out the fine of 56 gr .15 m . and make ic a parallell Radius, by fitting it over in the fines of 90 and 90_{0} or in the ends of the line o^{f} lines, and then take 5 gr . for the ciffirence of la itudes out of the line of lines, and carrie it parallell to the former, I thall find it to croffe both lines of lizes. in the points of $6:$ and fo it gives the fame diftance as before.

Or if rhe diftance be fmall, it may be found by the former: Table. For the Rumb b ing found in the fide of the Table, and the difference of latitude in the fame line; the top of the
columne wherein the difference of latitude was found, Ghall gue the number of leagues in the diftance required.

Or we may find this diftance in the Table of Rumbsin the fiitt Prop following. For according to the example looke into the Table of the third Rumb for 5 g r. of latitude, and there we fhall finde $\sigma \mathrm{gr} .10$ parts under the title of diftance.

So if the difference of latitude vpon the fame Rumb were 50 gr . the diltance would be 60 gr . I 3 parts. It the differ nce of latitude vpon the fame Rumb were onely $\frac{1}{2}$ of a degree the diftance would be onely 60 parts, fuch as soo doe make a degree.

In the chart let a Meridian $A B$ be drawne through A, and paral!els of latiiude through A and C; and then in \boldsymbol{A} with $\mathcal{A} \boldsymbol{B}$ make an angle of the Rumb $\mathcal{B} \mathcal{A} C$: fo the diflance taken from \mathcal{A} to C, and mea(ued in the Meridianlin according to the latitude of the piaces. Thall be found to be 6 gr . or 120 lcagues . And fuch is the diftance required.

3 By the distunce and botb latitudes to find the Rumb.

As the difrance vpon the Rumb, to the difference of latitudes: So is the Radius
to the fine of the complement of the Rumb from the Mc-
As if the places given were A in the latitude of 50 gr : C in the latitude of 55 gr . the diftance betweene them being $6 \mathrm{gr} . \mathrm{vpon}$ the Rumb. Fiift 1 take 6 gr . for the diftance vpon the Rumb, \& lay it on both fides ot the Sector trom the centcr ; then out of the fame fcale 1 take $s \mathrm{gr}$. for the difference of lati ude, and to ir open the Sector in the termes of the former diftance : to the parallell Radius taken and meafured in the fines, doth give 56 gr .15 m . the complement whereof 33 gr .45 m . is the argle of the Runbs inclination to the Meridian, which was required.

The ufe of the Meridian line:

In the chari let a Meridian A B bedrawne throish A, and parallels of latitud: bo:h throu hh A and C; then open the connaffes according oo the latioute of the places to εF the quatitie of 6 gr . in che maridian, and fectingone foote in A turne the ofter till i: crofe the parallell $B C_{1 a} C$, a id draw the right line $A C$: oo th: aigle $\mathcal{B} A C$ fhill $\mathrm{h}:$ w the inclination of the Ran's to the an ridian to be 33 gr .45 m as before.

Thefe three lalt Prop. dep:ad one o. 1 the ocher, and may be wroughr as truely by the com not fea-chart as b/ this of
 the Selfor, the diftnce and th: difference of latitudes miy as well or better be taken out of the line of lines (which here reprefenterh the Eguator) or any other line of equall parts, as out of the inlarged degrees in the mstridian 'ine. But in the propofitions following, the difference of longitude malt be taken out of the Æquitor ; che difference oflatitudes and difarce vpon the Runb, mult alwave; be taken oat of the mee ridian line; which [th:refore call the proper difference, and proper diftance.

4 By the longita le and latitule of twoplaces: to find the Rano 5.

As ifthe places given were A in the latitade of 53 gr © in the latitude of $\mathbf{5} 5 \mathrm{gr}$. and the difference of longitude betweene them were 5 gr .30 m .

In the chart let meridians and parallels. be draw're through A and C, and a fraig'tine for the Rum's from A to C; then by that we Thewed Cip. 2. Prop. 9 inquire thequantitie of th: angle B A C, and it thall be found to be 33 gr .45 ws. which is the third Runb from che Meridiaia. Wherefore the proportion holds for the Sector,

As $A B$ the proper difference oflatitude, is to $B C$ the difference of longitude:
Sos \mathcal{A} ' B as Radius,
ro BC the tangent of the Rumb from the Meridia:
According to this I take the prozer difference oc latitude.
from 50 gr to 55 gr . out of the line of meridians;and lay it on borh fides of the sector from the center; then I take the difies rence of longitude $s \mathrm{gr}_{2}^{2}$ out of the line of lines, and to it open the Sector in the termes of the former difference of latitudes: fo the parallell Radius taken from betweene 90 and 90 , and meafured in the greater tangent on the fide of the S_{C} Eor, doth give 33 gr .45 m . for the Rumb required.

But if the Runb fall nearer to the 届quator;

> As $A D$ the difference of longitudes, is to $D C$ the proper difference of latitudes: So $A D$ as Radius,
> to $D C$ the tangent of the rumb from the rquator.

According to this I take the former difference oflatitudes from 50 groto 5 gr . out of the line of Meridians, and to it open the Seitor in the termes of the difference of longitude rects oned in the line of lines from the center: fo the parallell Radiu; taken and meafured in the tangent, dothgive 56 gr . $15 m$. for the Rumb from the Aquator ; wh ch is the compleme tr to the former $33 \mathrm{gr} .45 . \mathrm{m}$. and fo both wajes it is found to be the third rumb from the Meridian.

But if this Rumb were to be found in the common feachart, it thould teeme to be aboue 47 gr . which is more then the four th Rumb from the Meridian.

S: By the Rumb and bot 5 latitudes, to find the differenic of longituide.

As $9 f$ the places given were A in the latitude of so gr . and \mathbb{C} in the la itude of 55 gr . and the Rumb the third from the meridian.

In the chart, let a meriaian be drawne throagh Λ, and a parallell of latitude through C, then in \mathcal{A} with $\mathcal{A} B$ make the angle of the rumb from the meridian $B A C$, (as was the wed Cap. 2. Prop. 10.) So the degres in the parallell be * weene T_{i} ad C, fall be found to $5 \mathrm{gr}_{0}^{\frac{1}{2}}$, the difference of longitude
longitude which was required. Wherefore the proportion holds for the SeCtor.

As $\subset B$ the Radius,
to $B C$ the tangent of the Rumb from the cheridian : So $A B$ as proper difference of the latitudes, to $\mathrm{B} C$ the diflerence of longitude.
According to this we may take the tangent of the Rumb which is here 33 gr .45 m . from the meridian, out of the greater tangent on the fide of the Sectior, and putting it over beweene 90 and $g 0$, make it a Radius : thei keeping the Sector at this angle, trke the proper difference of latitudes from 50 gr . to 55 gr . out of the lime of Meridians, and lay it on both fid s of the Sector from the cenrer: fo the parallei taken from the termes of this difference, and meafured in the line of lines Thall thew the difference of longitude to be 5 gr . t .

Or if the Rumb fall nearer the aquator.

> As $\mathcal{D} C$ the tangent of the Rumb from the equator, to $A D$ the Radius :
> So $\mathcal{D} C$ as proper difference of the latitudes,
> to $<\mathcal{D}$ the difference of longitude.

According to this we may beft work by parallel entrance. firt taking 56 gr . $15 m$. for the ang'e of the Rumb from the equator, out of the greater tangent, and make it a parallell Radius : then take the proper difference of latitudes out of the line of meridians, and carrie it parallell to the former: fo we hall find it to crofe the line oflines in $5 \mathrm{gr}, \frac{1}{2}$. And this is the difference of longitude required, the lame as before.

But if this difference were to be found by the cominon fea-chart, i- fhould feeme to be onely 3 gr . 20 m . which is more then 2 degrees leffe then the truth. And yet this error would be grearer, if either the latitude be greater, or the Rumb fall nearer the Equator: as may appeare by compas ring the common fea-chart with the Tables followings

	fecond $\mathrm{Kn}_{\mathrm{n}} \mathrm{m}^{6}$ \} an sbe Meridinn.	2 (orth North-adt, south Sowsh-caft,	Northo Northeweft; Sowth Soush we s?.
	Long. Dif.	La Lo. g$)^{\text {Dift; }}$	L^{2} Long. $D_{i} \mathrm{~F}_{\text {f }}$.
	Gr.P. Gr_{0}	Gr Gr.P. Gr.	Gr $\mathrm{Gr}^{2} P_{2}$
		$30: 3033247$	6031256
	- 42 1 08	3135133	61320966
	- 83216		6232966711
	124325	3314423572	63333866819
	165433	34150036.80	6434797927
5	207 541	35155037	65135.757035
6	$\begin{array}{llll}2.49 & 6.49\end{array}$	$3616 \quad 093897$	60367571
7	91757	3716514005	
8	32866	38170341	6838887360
9	3. 74.97	3917564	$6940: 0074$
	416108	40181043	704151975
	4591890	41186544	
12	50112	42192045	7243747793
	5431407	4312764^{6}	7345117900
	5851515	$44^{20} 3347$	744451880
15	62816	$4520 \quad 924871$	$7548-12818$
16	9711732	462 1 5049.79	7604978826
	7141840	4722115085	7751558834
1.8	87581948	48.22725295	$7853 \quad 468442$
19	$80120 \quad 56$	$49.23: 355303$	$7955: 549551$.
20	8452165	5023985412	80-57:82 8659
	18902273	51246355	8160338767
	$934{ }^{2} 3.81$	5225.3056	8263.138876
	2.7924		8.366328
	10,242598	54\|26 6958845	84699990192
25	510702700	55.27 .395953	8574329200
	111628	56.2812 - 61	18679393
		57.28 87161 7	8786469417
	$812,0830.31$	15829.616278	8.889610 .95125
	12553139	. 5930446386	61891125719633.
	01: 031329	60312564	

 from the Meridian $\}$ Senth enfl by Seutb, Soutt-well b) Soutb.

	Lang.						
Gr	Gr.P.	Gr.t.	G	Gr.P.	$\overline{\mathrm{G},} \mathrm{P}$.	G	
0	0	0	30	21.0	36	5042	
1	66		31	2480	3728	1517	
2	33	40	32	2258	3819	625318	
3	200	361	3.32	2338	3969	6354.63	
4	2. 67	481	3	4	4089	545612	
5	334	601	35	25. 0	4209	5557	
6		$7 \quad 22$	36		43 30	665929	
7	468	842	3.	2664	4450	6760.69	
8	536	9.62	38	27.48	4570	686371	
9	$6{ }^{6} 031$	1082	392	2834	$4^{6} 90$	6964.53	2
10	671	1203	402	2921	4812	706644	
		$1{ }^{2} 23$	41	3009	4931	7168458	
	8	1443	42	30 98	5051	727075	6
13	8.	156	43	$3: 88$	5171	7.372 .77	7.
			44	280	5292	747512	9
	1011	18.04	45	3374	54 12	$7577 \quad 62$	
	8		4	3469	5532	3	
	5			35675	5652	8315	
	122	21.65	48	3666	57.73	7886	
	129	228	493	3767	58.93	798960	
20	1364	2405	503	3869	6013	809327	
21	$14 \quad 35{ }^{25}$	2526		3974	133	19732	
	1507	46		4082	62.54	82 10.185	
	I' 580	766		41.91	63.74	8310697	96.
	1653	2886		4303	6494	411290	
	1726	3007		4419	6615	8511990	
	3	3427			67.35	86128.45	
	87513	32.47		$46 \quad 58$	6855	87139471	
	195013	67		4782	6975	8815500	
				49117	7096	88 51	
	21	60816		50427	721690		

TWe foursta anmbs $\}$	North-enil,	
from do Meridian. $\}$	Sowtb-caf,	

 from the Mcridian. \} Soutf-uaft and b, Eist, South-weft and by Wreft

 $710 \quad 5012603759686660671395412060$ $812011440 \mid 3861575840681404512240$ $9113 \quad 5216 \quad 20396348702069144 \quad 5312420$ 10150418004065427200701488112600 $11165^{6} \overline{19} 8041 \overline{67} 3973807153 \quad 3012780$ 12 I8 0921 $60426939756072158 c 012960$ | 13 | 19 | 62 | 23 | 40 | 43 | 71 | 42 | 77 | 40 | 73 | 163 | 00 | 13 | 1 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | 21 | 16 | 25 | 20 | 44 | 73 | 48 | 79 | 20 | 74 | 168 | 26 | 13 | 20 | |

 18 2739132404882 10 8640781931714040 $1925971342049843688 \quad 20792006914220$

 $23|35 \quad 384140| 53 \mid 7388954083239.6114940$

 $27.76004860|57| 104331026087 \mid 3123615660$ $28+3.6750,40581071210440$ S8 3451515840 $294538 ; 320559109981062089 \mid 10672116020$ 30471054 oc)

の～

Thefe tables are calculated for each of the Rnm's.
The firt feven have three columaes, and of them the fir f : containeth the degrees of Latitude fro n the Equino tiall to. thi: Pole: the fecond doch give the difference of Longitude; and the third the diftance, both of them belonging to that Rumb and latitude.

As in the Table of the third Rumb; at the latitude of 50 Gr. 1 findunder the citle of Longitude. 38 gr .69 parts, and under the title of diffance 60 gr .13 parts. This shewes that if the courfe held conftanty on the third Rumb from the Equino ftiall to the Latitude of so gr . the difference of Longisude would be 38 gr .69 parts. of rao and the diftance upon the Rumbe 60 gr . 13 parts. For here I reckon the ditance by degrees, rather then by leagues or miles, and fubdivide each degree into 100 parts, rather then into 60 minutes, for the more eafe in calculation, and withall to make the calculation to agree the better, both. with this, and my Crofé fatafe. and other inftrumentr.
The ufe of thele Tables, for the finding of the difference of Longitude, is this. Turne to the rable of the Rumb, and there fee what longirude belongech to either latitude, then take the one longitude our of the other, the remainder will be the difference of long itude required.

As in the formes example, where the places giverwere: 1 in the latitude of 50 Gr . C in the latitude of 55 Gr . and the Rumb the third from the meridian: I looke into the table. of the third Rumb and there find,

$$
\begin{aligned}
& \text { Latitude sogr. Longitude } 38 \mathrm{gr} .69 \text { parts. } \\
& \text { Latitud: } 55 \mathrm{gr} \text {. Longitude } 44 \mathrm{gr} \text {. } 19 . \\
& \text { Therefore che diff. of longieude } 5 \mathrm{gr} \text {. } 50 \text {.. }
\end{aligned}
$$

There is another ufe of thefe tables, for the defribing of the Rumbs both on the G lobe, and all forts of Charts. Fcr having drawne the circles of longitude and latitude, and finding by the tables, the difference of longitude belonging to eaçh Rumb and latitude: If we make a pricke in she chast, at
every degree of latitude, according to that difference of longitude, and draw lines through thofe prickes, fo as they make no angles, the lines fo drawne fhall be the Rumbs re-: guired.

The ufe of the eight Rumb is Comething different from the reft. For there being here no change of latirude, l have fet to each latitude, the dffernce of longitud, belonging to one degre: of diftance, and the diftance belonging to one degree of longitude.

As if two places fhall be 20 leagues, or one degree ditane one from the other, in the latitude of 50 gr . th. difference of longitude betweene them will be $1 \mathrm{gr}^{\mathrm{r} .} 55 \mathrm{parts}$. But if they differ one degree in longitude; the diftance betweene them will be onely 64 parts, wh ch fall thort of 13 leagues, or at the mott 64 gr .28 parts, fuch as 10000 do make a degree.

> 6 By the differtnce of longitude, Rumb, andone latzowde, to find the other latitude.

As if the places given were \boldsymbol{A}, in the latitude of 50 gr . C in a greater lattiude but unknowne, the difference of loingitude $.5 \mathrm{gr}_{0} \frac{1}{2}$, and the Rumb the third from the Meridian.

In the chart let $\mathbf{A} B, D \quad C$, meridians, be drawne through A and C, according to the difference of longitnde, one $; \mathrm{gr}_{\mathrm{s}}^{\mathrm{z}}$ from the other; and a parallell of latitude through ert, crof. find the meridian CD in D: then in A, with AB, make an angle of the Rumbe B A C: fo the degrecs in the meridian betweene D and C, fhall be found to be 5 gr . the proper diffe: rence of latitude which was required. Wharofore the propors tion holds for the Sector,

As A D the Radius to $D C$ the tangent of the Rumb from the æquator.
So $A D$ as difference of loigirude, to $D C$ the proper difference of latitude

According to this, I take $56 \mathrm{gr}, 15 \mathrm{~m}$. for the angle of the Rumb from the xquator, out of the greater Jangenti, and
make it a parallell Radius. Thea I Reckoan gro $\frac{1}{\text { in the line }}$ of lines from the center, for the difference of longitud. So the parallell taken fron the termes of this difference, a ad meafured in the liue of miridians, fhall reach from so gr. the latitud: given, to 55 gr . Which is the latitud. required.

Or if the Ru ab fall nearer to the meridian.
As $B C$ the tangent of the Rumb from the meridian,
is to $A B$ the Radius:
So $B C$ as difference of longitude,
to $A D$ the proper difference of latitude.
According to this we may belt work by parallel entrance ${ }_{j}^{n}$: firt take 35 gr .45 m . for the angle of the Rum's from the mezidian, out of the greater Tangent, and make it a parallell Radius; then take ρ gr. $\frac{1}{2}$ for the difference of lo gitude our of the liae of lines, and carry it parallell to the former, till the feete of the compades fty in like points: fo the line between the cencer and the place of this fty, being takein and meafured in the line of meridians from 50 gr.forward, fhall thew, the latitude required to be 55 gr as in the former way.

The like may be tound by the tables of Rumbs. For in the table of the chird Rum's, at the lavicude of 50 gr . I finde the longitude of 38 gr .69 p ; to this if I adde 5 gr .50 p . for the dife. fereace of longitud: given, the co npoand longitude will be 44 gr . 19 p . and this anfwers to the latitule of 55 gr .

But if this difference of latitu de were to be fould by the common fea-chart, it hould feeme to b: 8 gr- 13 mand fo the fecond latitude hould b: 58 gr .13 m . which is aboue 3 gr . more then the truth.

> 7 By one latitude, rumi', and difance, to find th: differesce of longitwhe.

As if the places given were \mathcal{A} in the latitude of 50 gr . C ina greater latitude but unkno vae, the diftance upon the Run' being 6 gr. betweene them, and the Rumb the third fron the meridiano:

In the chart, let a meri dian A B, and a paallell A D be drawne hough A, a id in A, wish A B, make ai angle $B A C$ for the Run's from:h: maridian; than open the compaffes according to the latitude of the plac s so $E \cdot E$, the quanritie of 6 gr in the maridian, transferring them into the Ruin' fro $n A$ to C, and through C diaw another meridian D C, crolfing the parallell drawae through A in D : fo the degrees intercepted inthe parallell fro A to D, fhall hew the $\mathrm{d} f f$ rence oflongitude required to be abous $5 \mathrm{gr} \cdot \frac{2}{2}$. Wherefore the proportion holds for the Sector.

As A C the Radius, (meridian: is to $\triangle D$, equall to $B C$, the fine of che Rumb from the. So AC as proper diftance upon the $R u m b$; to A.D che difference of longitude.

According to this I take the fine of 33 gr .45 m . for the and gle of the Rumb from the meridian, and make it a parallell Radius; then keeping the Sector at this angle, I take 6 gr . for the diftance ont of the meridian line, according to the eftimated latitudes of both places, and lay it on both lides of the Seo. Cor from the cencer:fo the parallell taken from the termes of this diftance,and meafured in the lines of lines, hall hew the difference of longitude to be about $5 \mathrm{gr} \cdot \frac{5}{2}$.

In this and fome of the Propi following, where there is but one laticude knowne, there miy be fometimes an error of a minute or two in the eftimation of the proper diftance, yet it may be reqtified at a fecond operation.

This propofition may alfo be wrought by the Tables of Rumbs. For according to the example, in the Table of the third Rumb, at the latitude of so gr.I find the longitude of 38 gr .69 p . and the diftance of 60 gr . 13 p : to this I adde 6 gr . for the diltance given; fo the compound diftance will be 66 of. 13 p.and this anfwers to the longituds of 44 gr . 19 p ; the: iff takethe one longitude out of ehe other, the difference will be $s \mathrm{gr}$. $s 0 p$, as before.

But if this difference were to be found by the cora non Seachart, it thould feeme to be onely 3 gre 20 wh which is T 3
moro
more then 2 gr . leffe then the truth.

S. By one latitude, Ramb, and difference of longitudes, to find the distance.

As if the places were given A, in the latitude of $50 \mathrm{gr}, C$ ina greater latitude but unknowne, the d fference of longitude betweene them being $5 \mathrm{gr} . \frac{1}{2}$, and the Rumb the third from the meridian.

In the chart let $A B, D C$, meridians be drawne through A and C, according to the d fference of longitude, and a parallell of latitude through A, croffing the merid an DC in $D_{\text {; thenin }}$ CA, with AB, make an angle of the Rurb B A C: fo the diftance on the Rumb from A to C taken and meafured in the meridian, according to the eftimated latitude of the places, thall be found to be ogr. Wherefore the proportion holds for the SeCTor.

> As A D, equall to BC , the fine of the Rumb trom the meriis to $A C$ the Radius:

So $A D$ as difference of longitudes,
to $A C$ the proper diftance upon the Rumb.
According to this, I take the lateriall Radius, and make it a parallell fine uf 33 gr .45 m . which is here the angle of the Kumb from the meridian; then I reckon 5 gr. $\frac{1}{2}$ in the lines of lines from the center, for the difference of longitude : fo the parallell taken from the termes of this difference, and meafured in the line of meridians, according to the latitudes of the places, ghall there hew the diftance required to be a-: bout 6 gr . which are 120 leagues.

Or if the Rumb fall nearer to the meridian, that the lateral Radius cannot be fitted over in his fine, this Prop. mult be wrought by parallell entrance, and fo alfo it gives the fame diftance as before.

Or we may find this diftance by the Table of Rumbs. For in the tabl of the third Rumb, at the latitude of sogr. I find the longitude of 38 gr .69 p . and the diftance of $60 \mathrm{gr} .33 . \mathrm{p}$.

To this longitade here found, I adde s gr. sop. for the d:ff-rence of longitude given : fo the compousd lo ritude will be 44 gr 19 p . and this anfivers to the diftance of 66 gr is p . Then if F take the one diftance our of the other, the remander will be 6 gr .02 p . for the diftance required.

But if this diftance were to be meafured on the common fea.chart, it fhould feeme to be almoft 10 gr . or at the leaft 197 leagues, above 77 leagues more then the truih.
> 2. By one latitua'e, diftance, aud difference of longitisides, to find the Rumb.

As if the places given were A, in the laritude of 50 gr . C in a greater latitude bur unknowne, the difference of lo gitude betweene them being 5 gro $\frac{-1}{2}$) and the diftance of 6 gr . uponthe Rumb.

In the chart let AB, DC, meridians, be drawie through A and C, and a parallell of latitude through $2 \mathcal{A}$; then open the compaffes according to the latitudes of the places, to εF the quantity of $\sigma \mathrm{gr}$. in the meridian, and leeting the one foote in A, the other foote fhall croffe the other meridian in $\mathrm{C}_{\text {; and }}$ if we draw the right line AC , the angle BAC fhall thew the inclination of the Rumb to the meridian to be about 33 gr . 45 m . Wherefore the proportion holds for the SeCtor.

As AC the proper diftance upon the Rumb, is to AD the difference of longitude:
So $A C$ as Radius,
to $A D$, equall to $B C$, the fine of the Rumb from the meridian.
According to this, I take the proper diftance $\sigma \mathrm{gr}$. out of the line of maridians, and lay it on both fides of the Sector thom the center; then I take the d ffirence of longitude 5 gro $\frac{1}{2}$ out of the line of lises, and to it open the Seltor in the terms of the former diftance: fo the parallell Radius taken from between: 90 and 90 ,and meafured in the fines, doth give about 3:3.gr. 45 m . for the Rumb required.

But if this Rumb were to be found by the common Sea-
chart, it thould feeme to be aboue 66 gr . and fo a'moft the fixt Rumb from the Meridian.

> 10 By the longitude ard latitude of two places, to fisid their diftance fromibe Rumb.

Let the Sector be opened in the lines of lines, unto a right angle(as was hewed before Cap.2.Prop.7.). hen take out the proper difference of latitude, and lay it on the one line, and the difference of longitude, and lay it on the oi her line, fo as they may both meete in the center, marking how far they extend. For the line taken from the termes of their extenfion, and meafured in the meridian, according to their latitudes, hall thew the diltance required.

So if the places given were A and C, A in the latitude of $50 \mathrm{gr} . \mathrm{C}$ in the latitude of 55 gr . the proper difference of latitude fhall be the line $A B$, and let $B C$ the difference of longitude be $\varsigma . g r . \frac{1}{3}$, we fhall find that $A C$ the diftance upon the Rumb is about 6 gr . which make 120 leagues.

For in the chart, let an occult meridian be drawne through A, and a parallell of latitude through C, croffing the former meridian in B, and a right line for the Rumb from A to C, fo have we a rectangle triangle $A B C$, whofe bafe $A C$, taken and meafured in the meridian from E below 50 gr to F_{2} as. much above 55 gr , doth containe the quantitie of $\sigma \mathrm{gr}$.

In the fame manner the Sector being opened to a right angle, in the lines of lines: if we take the differenec of latitude out of the line of meridians, in his proper place from $\rho \otimes g r$, to 55 gr .and place ir on one of the fides from the center, to refemble $\mathcal{A B}$, then reckon the difference of longitude on the other perpendicular line from the center to $\$ \mathrm{gr}^{\circ} \frac{1}{3}$, in ftead of $B C$, we fhall have the like rectangle triangle on the Sector, to that which we had before on the chart, and if we take out the bafe of it, and meafure it in the dine of meridians from below 50 gr . to as much aboue 55 gr . we fhall finde as before, that it containeth about 6 gr . or 120 leagues.
But if this ditance were to be meafured on the common

Tea-chart, it hould feeme ro be almoft 7 gr. ${ }_{4}$, or 45 leagues; which is 2ρ leagues more then tefe truxh.

11 By the latitude of two places, and the diftanceupon the Rumb, to find she difference of long itrude.

Let the Settor be opened in the lines of lines to a right an: gle, then take out the proper difference of latitudss, aid lay it on one of the lines from the center, then take the proper diftance with a paire of compaffes, and fetting one foote in the termes of the difference, turne the other foote to the other line ot the Seftor, and it fhall there fhew the difference of longitude required.

So if the place given were A, in the latitude of $50 \mathrm{gr} . C$ inthe latiude of $5 \rho g$ r. with 6 g r. of diftance one from another, we fhall find their difference of loggitide to be aboue $5 \mathrm{gr} \cdot \frac{1}{2}$.

For in the chart let a meridian $A B$ be dawne for the one; and $B C, A D$, parallells oflacitude for them both. Then open the coinpaffes according to the latitude of the places, to $E F$ the quantitie of 6 gr . in the meridian, and fetting one foote in A, having latitude of so gr . turne the other to the parallell of 55 gr . and it hall there cut off the required difference of longitude BC 5 gr: $\frac{1}{2}$.
In the fame maner, the Sector being opened to a right angle, in the lines of lives: if we take the difference of latitude out of the line of meridians in his proper place from 50 gr unto 55 gr . and place it on one of the lines from the center; then take 6 gr . the diftance upon the Rumb out of the fame line of meridians, according to the latitudes of the places, and fet the one foote in the terme of the former difference, turning the other foote to the other perpendicular line, we Thail finde that it will croffe it about 5 gr : $\frac{1}{2}$ from the center: which is the difference oflongitude required.

But if this difference of lengitude were to be found by the common fea chart, it would feeme to be onely $;$ gr. 20 \%m which is more then 2 gr, $\mathbf{2 0} \mathrm{m}$. lefie then the truth.

12. By one latitade, diffance asd differense of longita lesy: to finde the difference of latitudes.

Let the Sector be opened in the line of lines to a right angle, and let the difference of longitude be reckoned in one of thofe lines from the center; then take the proper diftance wirh a paire of compaffes, and ferting the one foote in the terme of the former difference, turse the other foote to the ather line of the Sector, aud it hall thence cut off a line, equall to the proper difference of lacitade required.

Sa if the places given were A and C, A in the latitude of so $g r . C$ in agreater latitude but unknowae, the difference of longiade betweene them $5 \mathrm{gr} . \frac{1}{2}$, and the diftaince upon the Rumb 6 gr . or 120 leagues, we fhall find the difference of latitude to be s gr.

For in the chart, let occult meridians be drawne through: \mathcal{A} and C, and a parallell of laticude through $\mathcal{A}_{\text {; }}$ then open the compaffe; according to the eftimated lati:udes of ehe places to E F the quancity of 6 gr . in the meridia: 1 , and fecting the one fo ve in A, turne the other to the meridian dra wne chrough C, and it thall there cut offche line $D C$, which is the difference of latitule required.

In the fame maner, the Sector being opened to a right angle, in the lines of lines, ifin the ore line we reckon the d.fference of longitude from the cen:er to $5 \mathrm{~g}^{r} \cdot \frac{1}{2}$, then taking 6 gr . for the diftunce out of the lize of Meridizns, according to the latitude of the places, we fet the one foote in the term: of the given differeace, andturne the other foxte to the other perpendicular line, we fhall find that it cuss a line from it, which take. and meafured in the line of meridians, from 50 gr. oa for ward, doth fhew the difference of latitude to be as before 5 gr .

But if this diference of latitule ware to be fould by the conmonfea-ciart, it would feema to be oaely 2 gr .25 m . which is 2 gr. 35 m . Iefle then the truth. Such is the difference. betwiene both thefe charts.

THE THIRD BOOKE

Containing the ufe of the particular Lines.
\rightarrow HE lines of lives, of fuperficies, of folids, of fines, with the lacerall lines of tangents and meridians, whereof I hauc hitherunto fooken, are thole which I priuc paily incended : that litele roo:ne on the Settor which remaineth, may be filled up with fuch particiclar lines a) each one fhall thinke c nvenient for his purpofe. 1 have made chuife of fuch as I thought might be beft prickt ois without hindring the fight of the tormer, viz.lines of Q uadrature of Segments S_{D} of Infrribed bodies, of Equatsd bodies, and of CMettals,

CHAP.I.

Of the lines of Cuadrature.

THe lives of quadrature may be knowne bv the leter Q, and: heir P ace betweene the lines of jines. Q fienifieh the fild of afgnare; ; the fid of a pentagon with tive eguall fides. 6 of an bexagon with fixe squall fides, and fo 78 , 9 , and to. S fanids for the S emidiamcter of a circle, and 90 for a line equall to 90 gr. in the circumferince. The ufe of them may be,

> 1 To make 4 fquare equall to a sircle given:
> 2 To make a circle equall to a Square given.

If the circle be firft given, take his femidiameter; and to it open the Sector in the points ar S: fo the parallell taken from betweene the points at 2, fhall be the fide of the fquare required.

30
 oralielines of 2uadratire?

Ifthe fquare be giventake his fide, and to it open the $S_{i}:$ Effor, in the pointsac 2: fo the parallell takei from betweene the poins at S, ihall be the Semidiameter of the circle required.
Let the S :m diameter of the circle given be A B, the fide of the fquare equall untoic (hall be found to be $C D$.

- To redace a circle given, or a Gquare into an equall pen:
tagon, or ot ber like fided avd like angled figure.
Take the af leof the figure given, and fit it over in his dae poinas: Fo the parallellst taken from betweene the poincs of
the other figures, fhall be the fid ss of thofe figures: which being madeup with equall angles, thill be all equall one to the other.

Let the Semidiameter of the circle given be $\mathcal{A B}$, the fide of an bexagon equall to this circle, fhall by thefe meanes be found to be $\mathcal{G} H$; and the fides of an octagon to be $I K$. O ther planes no: here ferdowne, may firt be reduced into $:$ fquare, hy the fixe Prop. Superf. and then into a circle, or osher of theie equall figures, as before.

4 To find aright line, equat to the circumference of a circle, or other part thereof.

Take the Semidiameter of the circle given, and to it open the Sector in the points at S; fo the parallell taken from betweene the poin's at 90 in this line, (hall be the fourth part of she circumference: which being kno wne, the other parus may be found out by the fecond and third Prop of lines.

Thus if the Semidiameter of the circl- given be $A \mathcal{B}$, the right line εF fhall be found ro be the fourth part of the circumference. Therefore the double of εF hall be equall to the circumference of 180 gr . and the halfe of E F thall be the sircumference of 45 gr . and fo in the ref.

CHAP. II.

Of the lines of Segments:

THe lines of fegmests which are hare placed between the: lines of fises and / uperficies, and are num'red by $5,6,7$, 8,9, ro. do reprefent the dianeter of a circl, fo divided into a hundred parts, as that a right line drawne through thefe parts, perpendicular to the diameter, fhall cit the circle into, two feg reats, of which che greater fegin:at hall have that proportion to the whole circle, as the parts ca: have to 100. The ufe of them may be:

1 To divide a circle given into two fegments according to aproportion given.
2 To find a proportion betweere a circle
and bis fegmentsirives.

Let the Sector. be opened in the points of an 100 , to the diameter of the circle given : fo a parallell taken from the points proportionall to the greater fegment required, hall giue the depth of that greater fegment.

Or if the iegment be given, let the Seitor be opened as be8ore; then take the depth of the greater fegment, and carry it

Of the lines of Ing fribed bodies:

parallell to the diameter: fo the number of points wherein they flay, fhall fhew the proportion to 100 .

As if the diam eter of the circee given were $\mathcal{B} L$, the depth of th: greater feg nent $L O$ being 75 , doth thew the proportion ot the fegme it $O M L \mathcal{L}$ to the circle to be as 75 to 300 viz. three parts of foure.

Hence I might fhew, ifthere were any ufe of it,

> Io find the fode of a fouare, equallso axy knowne fegment of a circle.

The fide of a fquare equall to the whole circle, may be found by the former Cap. and then havigg the proportion of the fegment to the circle, we may diminifh the fquare in fuch proportion, by that which hath beene Thewed Lib. 1. Cap. 3. Prop, 3.

CHAP. III.

Of the lines of Infcribed bodies.'

THe lines ofingcribed bodies are here placed betweene the line; of lines, and may be knowne by the letters, \mathcal{D}, S, I C, O, T, of which D figaifieth the fide of a dodecabedron, I of an cocrabedron, C of a cube, O of anotzabodron and T of a oetrabedron, alli ifcribed into the fame fphare, whofe femi: diameter is here fignified by the leterer S.

The ufe of thefe lines may be,
1 The femidiameter of a phbare being gives, to find t be fides of the fiue regular bodies, which may be inf cribed in the faid.fphare.
2 The fode of any of the fine regular bidies Seing given,
to find the femsidanseter of a phore, that will circumpiribe the faid bodie.
If the fghare be firf given, take his femidiameter, and to it оре
open the $S e$ elor in the points at S : if any of the other bodies be firft given, take the fide of it, and fit it over in his due foints : fo the parallell taken from betweene the points of the other bodies, hall be the fides of thofe bodies, and may be infcribed into the fame fphrec.

So if the femidiameterof the fphere be A Cothefide of the dodecabedren infcribed thall be $\mathcal{D} E$.

CHAP. IIII.

Of the lines of Equated bodies.

THe lines of equated bodies are here placed betweene the lines of lines and folids, noted with thefe letters, $D, 1, C$, S, O, T, of which D ftands for the fide of a dodecabedron, I, for the fide of an $1 c o$ Sabedron, C for the fide of a $c u b e, S$ for the diameterof a/phere, O for the fide of anoctabedron, and T for the fide of a tetrabedron, all equall one to the other. The ufe of thefe lines may be.

1 The diameter of a pphare being given, to find the fides

 of the fiue regmlar bodies, eqwall to that Jphare.2 The fide of any of the fine regslar bodies being given, to fird the deameter of a Pphare, and the fides of the other bodies, equali to the firft body giveis.
If the fphare be firf given, take his diameter, and to ir open the ScCtor in the points at S : if any of the other bodies be firt given, take the fide of it, and fit it over in his due points: fo the parallels taken from betweene the points of the other bedies, fhall be the fides of thofe bodics equall to the firf body given.

Thus in the laft diagram, if the diameter of a fohxre given be $B C$, the fide of the dodecabedron equall to this fphare, would te found to be F G.

CHAP.

CHAP. V.

Of the lines of Mettals.

THe lines of Meitalls are here ioyned with thofe before of equated bodies, and are nored with thefe charatters -.¢.5.D.\&.f. 4 . of which \odot ftands for gold, q for quickfilver, I for leade, D for filver, q for copper, d for iron, and 4 for tir. The ule of them is to give a proportion betweene thefe feuerall mettals, in theit magnitude and weight, according to the experiments of Marinus Ghetalda, in his booke called Promotus Archimedes.

I In like bodies of feverall mettalls and equall weight, baving the magnitude of the one, io finde the magnitided of ibe reft.
Take the magnitude given out of the lines of Solids, and to it open the Sector in the points belonging to the mettall given: © the parallells taken from between the pointsof the other mettalls, and meafured inthe lines of Solids, hiall giue she magnitude of their bodies:

Thus having cubes or fphxres of equall weight, but feverall mettalls, we hall finde that if thofe of tin containe $10000 \mathcal{D}$, the others of iron will containe 9250 ,thofe of copper 8222, thofe of filver 7161, thofe of lead 6435, thofe full of quickfilver 5453, and thofe of gold 3895
> a In like bodies of feverall mettalts and equall magritude, having the weight of one to finde the weight of the reft.

This propofition is the converfe of the former, the prod portion not direft, but reciprocall, wherefore having two like bodies, take the given weight of the one out of rhe lines of Solids and to it open the Secitor in the coints belonging to X th
the mettall of the other body: fo the parallell taken from t he: poinats belonging to the body given, and meafured in the lines of Solids, hall give the wsight of the body required. As if a cube of gold weighed 38 itand it were required to. know the weight of a cabe of lead having equall mignitude. Firlt I take $38 \mathfrak{t}$. for the weight of the gold ${ }^{\prime \prime}$ cube, out of the hines of Solitis, ind put it over in the points of 5 belonging rolead: fo the paralilil rakenfrom betweene the points of of ftandiag forgold; and meafured int the lines of 'Solidt, dorh give the witigh of the leader cabe required to be $2 \boldsymbol{2} \boldsymbol{L}$.

Thus if af phize of gold hall weigh $\mathbf{1 0 0 0 0}$. we fhall finde that a fotere of the fa ne dimmeter fall, of quick filiver thatl weigh 7143 , a fiphre a lead 6053 , afphare of fiver 5438° a fiphere of copper 4737 , a. fphare of iron 4280 , and a fphare of tinne 38950 :

3. A body being given of.one mettall; to make another like unto of, of anot her met tall, and eqsall weigbt.

1. Take ourorte of the fides of the body given, and putic over in the poines belonging to his metrall: fo the parallell take fron berweene the points belonging to the other mertall, fhall give the like fide, for the body required. If it be an itregular bödy, tet the ocher like fides'be found out in the fame manner.

B

Let the body given be a fphere of lead containing in mago nitude $16 d$, whofe diamerer is A, to which I am to make a fphare of iron, of equall waight: If lease out the diameter Λ, and pur it over in the points of 5 belonging to lead, the parallell taken from betwecre the points of of fanding for iron, ithall be B, the diameter of the iron fohare required. And this compared with the other diameter, in the lines of

Of the lines of exectalis: found to be 23 d . in magnitude:

felids will be found to be 23 d . in magnitude:
4 A bodybeing given of one mettall, to make another like unto it of another mental, accor-. ding to a weight givers.

First find the fides of a like body of equall weight, then may we eth r augment or diminift then according to the proportion given by that which we hewed before in the fecold and third Prop: of Solids.

As if he body given were a pare of lead; whole dameter is $A_{\text {; }}$ and is were required to find the diameter of a phase of iron which that weigh three times as much as the Iphære of lead: 1 ta $\mathbb{C} A$ and pac it over in the points of K, his parallell taken from between the points of σ, hall give me \mathcal{B} for the diameter of an equall fphxre of iron: if this be aug minted in fuck proportion as x unto 3_{p} it giveth C for the diameter required.

43

CHAP:

I56
 of the lines on the cedgess of that setior.

H4 ving haewed fome ufe of the lines on the flat fides of the SeCTor, there remaine onely thole on the edg s. And here one balfe ot the outwardedge is d:vided into inches; and numbred acconding to theirdift tice from the ends of th: Sector. As in the Sector of fourreene inches long, where we fiid 1 and 13 , it Theweth that divifion to be tinch from the nearer end, and riz inchesif from the farther end of the Sector.

The other halfe containeth a line of leffer tangents, to which the gnomon is Radius. They are here continued to 75 gr . And if there be need to produce them farther, take 45 our of the number of degrees required; and double the remainder: fo the tangeni and fecant of thisidouble remainder being added, nall make up the tangent of the degrees required.

As if $A B$ being the Radius, and $\mathcal{B C}$ the tangent line, it were required to find the tangent of 75 gr . If we take $45 \mathrm{gr}_{\text {。 }}$ out of 75 gr . the remainder is 30 gr . and the double 60 gr . whofe tangent is B D, and the fecant is AD: if then we adde $A D$ to $B D$, it maketh $B C$ the tangent of 75 gr . which was required. In like fort the fecant of $6 \mathbf{g} r$ added to the tangent of 61 gr giveth the tangent of 75 gr .30 m . and the fecant of $62 \pi r$. added to the tangent of 62 gr giveth the tangent of 76 gr . and

Thenje of the leffer Tangent.

Toobferwe the als itude of the Surne.

Hold the Sector fo as the tangent BC may be verticall, and the gnomon $B \mathcal{A}$ parallell to the horizon; then turne the gnomon toward the Suane. fo that it may caft a fhidow upon the tangent, and the end of the fladow fhail thew the altitude of the Sunne. So if the end of the gnomon at \mathcal{A}, do give a Shadow unto H, it fhewe h hat the a titude is $3,{ }^{8} g r \cdot \frac{1}{2}$, if unto D, then $\sigma 0 \mathrm{gr}$. and fo in the ref.
'There is anoth r ufe of his tangent line, for the drawing. of the houre lines upon any o: dinary plane, whereof I will. fet downe thele propofitions.

I To draw the boure lines upon as barizoniall plane.
2 Todraw the boure lines upon a direct vertitall plaine:.
Firft draw a right line A C for the horizon and the xquator, and croffe ir at the point A about the middle of the line with A B anotherright line, whici may ferve for the meridian and the houre of 12 ; then take out 15 gr . out of the tangents, and pricke the n downe in the xquator on both fides from 12: fo the one point fhill ferve.for the houre of 11, ands the other for the houre of s . Againe, take our the tangent of 30 gr . and pricke it downe in the x quator on both fides from 12: to the one of thefe points. Thall ferue for the houre of 10 , and the other for the houre of 2 . In like maner nay you pri:ke downe the tangent of 45 gr . for the houres of 9 aud 3 and the tange t of 60 gr . for the houres of 8 and 4 , and the tangent of 75 gr . for the houres of 7 and 5 .

Ur if any pleafe to fer downe the parts of an houre, he may allow 7 gr .30 m .for every halfe houre, and $3 \mathrm{~g}^{2} .45 \mathrm{mofor}$ eve ry quarar. This done, you are to confider the laritude of the place, a d the qualitie of the plane: For the Secant of the latitude fhall be the femidiameter in a vertical plane, \& the fecans of the comp!ement of the laritude in an horizontall plan-

FO:

ESE

For example, about London the latitude is $51 \mathrm{gr}, 3.3 \mathrm{~mm}$. mod let the plane be verticall. If you take A, V, the fecant of itigr. 30 mx out of the Sector, and prickeit dow ic in the meidian line from A unto K, the point V hall bethe center: ind if you draw right lines from V uaio 11 , and 10 , and the eft of the houre points, they thall be the hourelines requ:ed
'But if the plane be horizontall, then you are to take out $14 H$ the fecant of 38 er. 30 m for the femidiame ter, and prick downe in the meridian line from A unto $H:$ fo the right ines drawnefrom the cencer H unto the houre points, fhall pe the howelines required; onely the houre of 6 is wanting, hadetat mult alwaves bedrawne parallell to the xquator hrough the center V in a vercicall, through the center H in o forizotall plane.
This being done, if you fer the lines $A H, H V$, to a right ingle ($H A V$) the right line $H V$ the bafe of this triangle fhat pe the axis of the ftyle for either plaine.

3 To, araw the boure lines on a polar plane.
4 To draw the houre lines on a meridian plane.
In a polar plane the xquator may be alfo the fame with the torizontall line, and she houre points may be pricked on as: sefore, but the houre lines muft be drawne parallell to the neridian.
In a meridianplane, the x quator will cut the horizontall ine with an angle equall to the complement of the latitude If the place; then may you make choife of the point A, and here croffe the x quator with a righe line, which may ferve for the houre of 6: fo the tangent of 15 gr . being pricked lowne in the xquaror on boib lides from σ; hall ferue for the - 0 rres offive and 7 ; and the tangent of $3 \circ \mathrm{gr}$. for the houres ff 8 and 4 and the tangent of 45 g . for the houres of 3 and 9 nd the tangent of 60 gr . for the houres of 2 and 10 ; and the angent of 75 gr . for the houres of I and II . And if you draw ight linesthrough thefe houre points, crofing the xquaor at right angles, they hall be the houre lines required.

The fubtilar will be the fame with the houre of s_{2} in t Polar plane, and with the houre of 6 in the Meridian plan the axis of the ftile may be parallell to the fubtrilar in cith plane according to the diftance of the third houre from t fubftilar.

; To draw the boure lines in a verticall declinisg plane.

Firft, draw $A V$ the meridian, and $A E$ the horizontal line crofling one the other at right angles in the point A.

2 Then take out αV, the fecant of the latitude of the place, which you may fuppofe to be $51 \mathrm{gr}, 30 \mathrm{~mm}$, and prick it downe in the meridian line from A unto V.

3 Becaute it is a deelining plane, and you may fuppore it to decline 40 gr . Eatsward, you are to make an angle of the declination upon the center A, below the horizontall line, and to the left hand of the meridian line, becaufe the declination is Eaftward, for otherwife it hould have bin to the right hand, if the deceination had bin Weftward.

4 Take A H, che lecant of the complement of the latitude out of the Sector, \& priche it downe in the line of declination from A unto H, as you did before for the femidiameter in the horizontall plane:
s. Draw a hateat full length through the point A, which mult be perpendicular unto A H, and cut the horizontall line according to the angies of declination, and it will be as the x quator in the horizontall plane.

6 Take the houre points out of the Tangent line in the Sector and pricke them downe in this x quator on both fides from the houre of 12 at A .

7 Lay your ruler, \& draw right lines through the center H \& each of thefe houre points : to have you all the houre lines of an horizontall plane, onely the houre of 6 is wanting, and that may be drawne through H perpendicular to H A.
lafty, you are to obferue and marke the interfections; which thete houres lines do make with A E the horizontall line of the plane: and then if you draw right lines through the center V, and each of thefe interfections, they thall be the hoare lines required.

Theline H F drawne up to the Horizon and parallell to the meridian, will give the fubfilar V F: The line FG drawne Perperdiculat to VF and equall to FH will give VG the axis of the ftile.

6 To pricke dowie the boure points another way.

Hiving draw e a right line for thex futor as bafore, and made choile of th: poine A, for the hoare of 2 : you may at pleafure cut of wo equall line; A so, and A 2. T.en upon the dittance betweene ro and 2 , make an equilaterall triangle ${ }_{5}$ and you hall have \mathcal{B} for the cearer of your x intor, and the line $A B$ hall give the dift ace fro n A to 9 , and from A to 3. That duactake oat the diftace batwee 9 and 3 , and this thill give the dittuce fro.n Ban:0 8 and from 8 unno 7 ; and from.junto x. and ag uine fron B un:o 4, and from 4 unto $s_{\text {and }}$ from 4 unto II . So hive you the houre points, a.d it you take out the diftance B I, B 3, B 5, \&c. You may finde the points not onely for the haife houres, bu: allo for the quarters.

Bac ific fo fall ous, that fom: of thefe houre points fall ous of your plane, you may helpe your felfe by the larger tangent, boh in the verticall, and horizontall planes.

For if at the houre points of 3 and 9 , in fchem. p. 158 yoin ditaw occult lines parallell to the meridian; the ditanc.s D C betweene the houre line of 6 , and the ho re points of 3 and 9 , will be equall to the femidiamerer $\mathrm{A} V$ in a verticall, and A Hin a horizontall plane, and if they be d vided in fueh fort as the line $A C$ is divided, you hall have the points of 4 , and 53 and 7 , and 8 , with th ir halles and quarters.

As in the horizoitall plane, take out the femidiameter A H, and make it a parallell Radius bv fitting it over in the funes of 90 and 90 : Then take 15.gr. our of the larger tangens and lay them on the lines of fines, where they will reach from the center unto the fines of $15 \mathrm{gr} \cdot 3^{2} \mathrm{~mm}$, therefore take out the eparallell fine of 15 gr .32 m . and it ihall give the diftance from 6 unto 5 , and from 6 unto 7 , in your horizontall plane. That done take out 30 gr . out of the larger tangent, and lay them on the fines, from the center unto the fines of 35 gr : 76 m and the parallell fine of 35 gr . 16 m . hall give, you the diftance from 6 unto 4 , and from 6 unto 8 , in your horizontal.
plane. Thelike muy be done for the halfe houres and quarcers.
So alfo in the verticall decining plane. It you firf take out the/ec.3ns of the declian-ion of the plane, and prick it downe in the horizonaline from A uito E, ad through E draw. right lines parallell o the meridai, which will car the former houre lines of 3 and η, or one of them in the pon: C : then take out the fen dameter AV, and prick it downe in thofe parallells from Jutto D, and draw right lites from A unto C and from V unto D; the line V Dhill be the houre of 6 , and if you divide thefe line $A C$ a $1 d \mathrm{DC}$, in fach fort as you divided the like line D C in the horizontal plane, you thall have all the ho ire points required.

Os youmy find the point D, in the hoare of 6 , wittrout knowled je either of H or C. For having prickt downe A V in the meridan line, and AE in the horizorall ine, and drawne parallels to the miridian through the poines at E , you map take the tangent of the latitud: out of the SeCtor, and fit it over in the fines of 90 and 90 : fo the paral ell fine of the declination n afared ia the fan tengent liae, fhall there fhew the complement of the angle D V A, which the houre line of 6 maketh with :he meridian; then having the point $D_{\text {i takeour che femidims eer } V A \text {, and pricke it downe in }}$ thofeparallels fron D into C: fo thall yoa have the lines D C and A C to bedivided as before.

The like mighe be ufed for the houre lines apon all other planes. Buil malt not wite all that may be done by the SeEFor. It may furtice that ! have wrote fo nethiag of the ufe of each line, and chereby given the ingeauous Readse occafion: to thinke of more.

The conclufion to the Reader?

IT is well knowne to many of you that this Sector was thus coss. trived, the moft part of this booke mritten in latin, many copies tranforibed and difperfed more then fixteene yeares fince. 1 amm as. the laft contented to give may that it conse forth in Englifh. Not that I thinke it morthy either of my labour or the publique wiews. but partly to fatis fie their importunity, noho not underfanding the Latine, yet were at the charge to buy the inftrument, and partly for my owne eafs. For as it is painefult for ot hers to tranfcribe syy copie, So it is trouble fonse for we to gine jatisfation berein to all that dej ire it. If 1 finde thisto give yous content, it Ball ind courage me to do the like formy Crofle-ftaffe, and fome ot her. Ingfr uments. In the meane time beare woth the Printers famits, end fo Ireft.

GreGam Collo 3: Maijo 163°

\boldsymbol{E}, G_{g}

FINIS.

THE
 FIRSTBOOKEOFTHE CROSSE-STAFFE.

CHAP. I.

Cf the defcription of the Staffe.

 He Crofse Staffe is an inftrument well knewn to our Sea-men, and much ufed bythe ancient A ftronomers $\&$ others, ferving Aftronomically for obferuation of altitide and angles of diftance in the heauens, Geometrically for perpendicular, heights aid diftances on land and fea.
The defcription and feuerall vfes of it are extant in print, by Gemma Frifuss in Latine, in Englifh by Dr. Hood. Idiffer fomething from them both, in the proiection of this Staffe, but fo, as their rules may be applied vino it, and all their profofitions be wrought by it : and therefore referring the Reader to their bookes, I hall be briefe in the explanation of that which may be applied from theirs vnto mine, and fo come to the vfe of thole lines which are of my addition, not extant heretofore.

Theineceflary parts of this Inftrument are five : the Staffe, the Cro $\int f e$, and the three fights. The Staffe which I made for my owne ufe, , is a full yard in length, that fo it may ferue for meafure.

The Croffe belonging to it is 26 inches $\frac{1}{5}$ betweene the two outward fights. Ifany would have it in a greater forme, the proportion betweene the Staffe and the Crofle, may bee fuchas 360 vito 262 .
The lines infcribed oa the Staffe are of foure fots. One of them ferues for meafurc and protraction : one for obferuation of angles: one for the Sea-cart; and the foure other for working of proportions in feuerall kindes.

The line of meaflue is an izco line, and may be knowne by his equall parts. The whole yard being divided equally into 36 inches, and each inch fubdiuided, firt into ten parts, and then each tenth part into halfes,

- The line for obleruation of angles may bee knowne by the double numbers fet on both fides of the line, begiuning at the fide at 20 , and ending at 90 : on the other fide at 40 , and ending at 180:and this being divided according to the degrees of a quadrant, I call it the tangent lise on the Staffe.

The next line is the meridian of a Sea-chart, according to M ercators proiection from the Equinoctiall to 58 gr . of latitude, and may be knowne by the leter M, and the numbers r.2.3.4.unto 58.

The lines for working of proportions, may be knowne by their vnequall diuifions, and the numbers at the end of each line.

IThe line ofnumbers noted with the letter N , diuided vnsqually into 1000 parts, and numbred with $102,3 \cdot 4$ vnto 10 .
2. The line of artificiall taingerts is noted wich the leter T, divided unequally into 45 degres, and numbred both wayes, for the Tangent and the complement.

3 The line of artififiall fines. noted with the letter S, divided unequally into 20 degrees, and numbred with $1.2 .3 \cdot 4 \cdot$ unto 90 .
4 The line of verfed fises for more eafie finding the houre and azimoth, noted with V, divided vnequally into about $164 \mathrm{gr}, 50 \mathrm{~m}$. numbred backward with 10.20 .30 . vato 164.

Thus there are feven lines infcribed on the S taffe : there are five lines more increribed gin the Groffe.

1 A Tangent line of 36 gr .3 m . numbred by 5. 10. 1 g. unto 35 : the midft whereof is at $20, \mathrm{gr}$; and therefore I call it the targent of 20 ; and this hath refpect vito 20 gr . in the Tangent on the Staffe.

2 A Tangent liae of 49 gr .6 m . numbred by 5 , 10. 15. unto 45 ; the midft whereof is at 30 gr . and hath refpect unto 30 gr . in the Tangent on the Staffe, whereupon I call it the tangent of 30 .

3 A line of inches numbred with I.2.3. vnto 26; cach inch equally fubdiuided into ten parts, anfwerable to the inch line upon the Staffe.

4 A line of feuerall chords, one anfwerable to a citcie of twelue inches femidiameter, numbred with 10.20 .30 . unto. 60. another to a femidiameter of a circle of fix inches; and the third to a femidiameter of a circle of three inches; both numbred with 10. 20. 30. unto 90.
5. A continuation of the meridian line from 57 gr . of latitude unto 76 gr ; and from 76 . to $8_{4} \mathrm{gr}$.

For the in cription of thefelines. The firt for meafure is equally diuided into inches and tent h parts of inches.

The tangent on the Staffe for obferuation of angles, with the tangent of 20 and the tangent of 30 on the Croffe, may all three be infcribed out of the ordinary table of tangents. The Staffe being 36 inches in length ; the Radius for the tangent on the Staffe will be 13 inches and 103 farts of $1000:$ Io the whole line will be a tangent of 70 gr . and mult be numbred by their complements, and the double of their complements, the tangent of io $g r$. being numbred with 80 and 160 .

The Radius for the tangent of 20 on the Crolfe, will bee 36 inches, and the whole line betweene the fights a tangent of $36 \sigma r .3 \mathrm{~m}$. according as it is numbred. The Radius for the tangent of 30 gr . on the Croffe, will be 22 inches and 695 parts of 1000 : fo the whole line betweene the fights will containe a tangent of $49 \mathrm{gr}, 6 \mathrm{~m}$.in fuch fort as they are numbred.

The meridianline may be infcribed out of the Table which I fet downe for this purpofe in the vfe of the Sector,

A 12
The

The line of numbers may be inicribed ou: of the firft Chiliad of Mafter Briggs Logarichmes : and the reft of the lines of proportion out of my Canno of artuficiall fipes and tangents ; and in recompence thereof this booke will ferue as a com ment to explaine the ufe of my Caron.

CHAP. II,

The ufe of the lines of inches for perpendicular beigbts and diftances.

IN taking of heights and diftances, the Staffe may be held in fuch fort, that irmay be even with the diftance, and the Croffe parallel with the height: and then if the eye at the beginning of the Staffe fhall fee his markes by the inward fides of the two firf fights, there will be fuch proportion between the diftance and the height, as is betweene the parts intercepted on the Staffe and the Croffe. Which may be farther explained in thefe propofitions.

Set the middle fight unto the diftance upon the Staffe, the
height

for beights and diftances?

height will bee found vpon the Croffe. For:
As the fegment of the Staffe
vnto the fegment on the Croffe:
So is the diftance given, unto the height.
As if the diftance A B being knowne to bee 256 feete, it were required to find the height BC : firft I place the middle fight at 25 incles and 6 parts of 10 ; then holding the Staffe levell with the diftance, I raife the Croffe, parallell vato the height, in fuch fort, as that my eve may fee from A the beginning of the inches on the Staffe by the fight E, at the beginning of the inches on the Croffe unto the mark C : which being done, if I find 19 inches and 2 parts of io intercepted on the Croffe betweene the fights ac E and \mathcal{D}, I would fay the height $\mathcal{B} C$ were 192 feete.

Or if the obleruation were to be made before the diftance were meafured, I would fet the middle fight either vato 10 inches, or 12 , or 16 , or 20 , or, 24 , or fome fuch other num beras might beft be divided into fererall parts, and thea worke by proportion. As if in the former example the middle fight were at 24 on the Staffe, and is on the Croffe, it thould feem that the height is $\frac{3}{4}$ of the diftace; and therefore the diftance being $2 ; 6$, the height fould be 192 .
\therefore Tofinde an beight, by knowing forsepart
of ine fanse height.

As if the height from G to C were knowne to be 48 , and it were required to find the whole heighe $B C$ e either put the third fight or fome other running fight vpon the Crofle betweene the eye and the marke G. For then

As the difference berweene the fights,
vnto the whole fegment of the Croffe:
So is the part of the height given,
vato the whole height.
If then the difference betweerie the fights E and F, frall A) 3
be height $\mathcal{B} C$ will be found to be g^{2}.

3 To findan height at twoftations, by knowing the difference of the fame ftations.

As the difference offegments on the Staffe, unto the difference of fations:
So is the fegment of the Croffe, unto the height.
Suppofe the firft ftation being at H, the fegment of the Crofle $E \mathcal{D}$ were 180 , and the fegment of the Staff $H \mathcal{D}$ 300:then comming 64 feete nearer vnto B, in a direct line, vnto a fecond fation at A, and making another obferuation; fuppofe the fegment of the Croffe $E D$ were 180° as before, and the fegment of the Staffe A D 240 ; take 240 out of 300 ; the difference of fegments will be 60 parts. And

As 60 parts unto 64 the difference of ftations:
So $D E 180$ unto $B C 192$ the height required.
In thefe three Prop. there is a regard to be had of the height of the eye. For the height mealured, is no more then from the levell of the eye upward.

4 To finde a diftance, by knowing the beight.

As che fegment of the Croffe, unto the fegment of the Staffe:
So is the height given, unto the diftance.
E5 So the fegment-E D being is, and D A 24 , the height $C B 192$, will hew the diftance $A B$ to be 256 .

s Tofinde a diftance, by knowing part
 of the height.

As the difference betweene the fights, unto the fegment of the Staffe:

So is the part of the height given, unto the diftance.
And thus the difference betweene E and F being 455° end the fegment D $A 240$; the part of the height $G C 48$, will give the diftance $A B$ to be 25σ.

> 6 To finde a diftance at two stations, by knowing the difference of the fame ftations.

As the difference of fegments orr che Staffe;
unto the difference of fations:
So is the whole fegment,
unto the diftance.
And thus the fegment of the Croffe being 180, the fegment of the Staffe at the firft flation 240 , at the fecond 300 , thedifference of the fegments 60 , and the difference of fta:tions 64, the diftance A B at the fifft ftation will be found to be 256 , and the diftance HB at the fecond ftation 320 .

7 Tofind abreadth by knowing the distance per-
pendicubar to the breadth.
This is all one with the firft Prop. For this bredth is but an height turned fidewayes : and therefore

As the fegment of the Staffe,
unto the fegment of the Croffe;
$S O$ is the diftance . unto the breadth.
And thus the fegment of the Staffe being 24, and the fegment of the Croffe 18 , the diftance AB 256 , will give the breadth B C to be 19 í.

> 8 To find a breadth at two stations iva line perper. dicular to thebredth, by knowing the difference of tbe fame Stations.

This is alfo the fame with the third Prop. and therefore

Oftaking breadths.

As the difference of fegments on the Staffe, unto the difference of ftations:
So the fegment on the Croffe betweene the two fights, unto the bredth required.
'And thus the difference berweene the ftations at A and H being 64, the difference of fegments on the Staffe 60 , the fegment of the Croffe 180 , the bredth $B C$ will bee found to beiga.

In like manner nlay we finde the breadth GC for having found the bredth B C the proportion will hold.

As DE is unto F E, fo B Cunto $G C$. Or otherwife,
As H a unto HA_{2}, fo FE unto $G C$.
Neither is it materiall whether the two fations be chofena ane end of the bredth propofed, or vithout it, or within it, if the line betweene the ftations be perpendicular unto the bredth : as may appeare if in fead of the flations at eA and H, we make choife of the like fations at I and K.
There might be other wayes propofed to work thefe Prop: by holding the Croffe even with the diftance, and the Staffe parallell with the heighr:but thefe would proove more troublefome, and thofe which aredelivered are fufficient, and the fame with thofe which others have fet down under the name of the lacobs Staffe.

CHAP. III.
The use the Tangent lines in taking of Angles.

1 To find an angle by the Tangent on the Staff.
L Ft the midge fight be alwaies fer to the middle of the Croffe, noted with 20 and 30 , and then the Croffe Bb
drawn
drawne nearer the eye, untill the markes may be feene clofe within the fights. For fo if the ege at A (thatend of the Staffe which is noted with 90 and 180) beholding the marks K and $2 \mathcal{F}$, betweene the two firlf fighrs, C and B, or the markes K and P berweene the two outward ligh:s, the Croffe being drawne downe uns H , hall ftand at 30 and 60 , in the Tain= gent on the Staffe: it fheweth the angle $K A N$ is 30 gr . the angle $K A P 60 \mathrm{gr}$. the one double to the other; which is the reafon of the double pumbers on this line of the Staffe: and this way will ferve for any angle from 20 gr . toward 90 gr . or from 40 gr . toward 180 gr . But if the angle bee keffe then 20 gr . We mult thon makeute of the Tangent vpon the Croffe

> 2 To finde an aingle by the Tangent of 20 upon the Croffe.

Set 20 unto 20 , that is, the middle fight to the middeft of the Croffe at the end of the Staffe, noted with 20 : fo the eye at A, beholdng the marks L and \mathcal{N}, clofe betweene the two firft fights, C and B, fhall fee them in an angle of 20 gr .

If the markes fhall be nearer together, as are M and \mathcal{N}, then draw in the Croffe from C varo E : if they be farther $2-$ funder,as are K and N , then draw out the Croffe from C vnto F; fo the quantity of the angle fhall be fill found in the Croffe in the Tangent of 20 gr . at the end of the Staffe; and this will ferue for any angle from 20 toward 35 gr .

3 To findean angle by the Tangent of 30 spon the Criffe.

This Tangent of $\overline{3} 0$ is here put the rather, that the end of the Staffe refting at the cye, the hand may more cafily remooue the Croffe: for it luppoferh the Radius to be nolonger then $A H$, which is from theeye at the end of the Staffe unto 30 gr . about 22 inches and 7 parts. Wherefore here fce the middle fight unto 30 gr . on the S raffe, and then either draw the Cioffe in or our, untill the marke; be feene berween
the two firft fights; fo the quantitie of the angle will be found in the Tangent of 30 , which is here reprefented by the line $G \mathrm{H}$; and this will lerve for any angle from 0 gr . toward 48 gr.

4 Toobeirue the aititude of the Sume backward.

Here it is fit to have an horizontall fight fet to the beginning of the Staffe, and then may you turne your backe toward the Sun, and your Crofle towatd your eye. If the altitude be vnder 45 gr . fet the middle fight to 30 on the Staffe, and looke by the middle fight through the horizontall vneo the horizon, mouing the Croffe vpward or downeward, untill the upper fight doe fhadow the upper halfe of the horizontall fight : fo the altitude will be found in the Tangene of 30 .

If the altitude flalbe more then 45 gr . fet the middle fighe unto the middeft of the Croffe, aridlook by the inward edge of the lower fight throungh he horizontall to the horizon, moving the maddle fight in or out, intill the upper fight doe fhadow the upper halfe of the horizontall fight: fo the altituide will be found in the degrees on the Staffe betweene 40 and 180 .

5 Tofat the Staffe to amy angle given.

This is the conuerfe of the former Prop. For ifthe middle= fight be fer to his place and degree, the eye looking clofe by the fights as before, cannot but fee his obiect in the angle given.

6 To obferne the altitude of the Sumne another way.

Set the middle fight to the middle of the Croffe, and hold the horizontall fight downward, fo as the Croffe may be parallell to the horizon, then is the Staffe verticall; and if the outward fight of the Croffe do hadow the horizontall fight, Bb 2
she complement of the altitude will be found in the Tangent on the Staffe.

7 Toobferue an altitude by thread and plummet.

Let the middle fight be fet to the middeft of the Croffe; and to that end of the Staffe which is noted with 90 and $180 ;$ then having a thread and a plummet at the beginning of the Croffe, and turning the Croffe upward, and the S taffe coward the Sunne, the thread will fall on the complement: of the altitude above the horizon. And this may be applied to other purpofes.

8 Toapply the lines of inclies to the taking: of angles.

If the angles be obferved betweene the two firt fights, there will be fuch proportion betweene the parts of the Staffe and the parts of the Croffe,as betweene the Radias and. the Tangent of the angle.

As if the parts intercepted on the Staffe were 20 inches, the parts on the Crolfe 9 iuches. Then by proportion as 22 vnto 9 , fo 100000 unto 45000 the tangent of 24 gr . $14 . \mathrm{m}$.

Butifthe angle fhall be obferved betweene the two outward fights, the parts being 20 and 9 as before, the angle will be 48 gr .28 m . double vnto the former.
In all thefe there is a regard to be had to the parrallax of the eye, and his height above the Horizon in obfervations at Sea; to the femidiameter of che funne, his parallax and refraction, as in the vfe of other ftaves. Aind fo this will be as much, or more then that wheh hath beene heretofore pertormed by the Croffe-Staffeo.

CHAP. IIII.

The ufe of the lines of equall parts ioyned with the lines of Chords.

THe lines of equall parts doe feruealfo for protration, as may appeareby the former Diagrams; but being ioy ned with the lines of Chords, which I place upon one fide of the Croffe, they will farther ferve for the protraction and refolution of right line triangles; whereof I will give one example in finding of a diftance at swo fations otherwife then in the fecond Cbap.

Let the diftance required be $\mathcal{A} \mathcal{B}$. At A the firf fation I make choife of a fation line toward C, and obferue the angle $B \mathbb{A} C$ by the tangent lines, which may be 43 gr .20 mm ; then: Bb 3 .
having:
having gon an hundred paces toward $C_{;}$I make my fecond ftation at D , where fuppore I firde the angle BDC to be 58 $g r$. or the angle $B D \cdot A$ to be $1 \times 2 \mathrm{gr}$ this being done, I may finde the diffance $A B$ in this maner.

I I draw a right line $\propto \mathcal{C}$, reprefenting the fationline.
2 I take 100 out of the lines ot equall parts, and pricke them downe from A the firt ftation unto ${ }^{\circ} D$ the fecond.

3 I open my compaffes to one of the chords of 60 gr. and fetting one toote in the foint A, with the other I defrribe an occult arke of a circle interfecting the fation line in E.

4 I take out of the fame line of chords a chord of 43 gr . $20 . m$ (becaule fuch was the angle at the firft ftation) and this I infribe into that occultarke from E unto F, which makes the angle FAD equall to the angle oblerued at the firt ftation.

5 I defribeanother like arke upon the center D, and inScribe into it a chord of 58 gr . from C unto \mathcal{G}, and draw the right line D G, which doth mecet with the other line $A E$ in the point B, and makes the angle B D C cquali to the angle obferved at the tecond ftation. So the argles in the Diagram being equall to the angles in the field, their fides will be alio proportionall : and therefore,

6 . I take out the line $A \mathcal{B}$ with my compaffes, and meafuring it in the fame line of equall parts, from which I tooke A D, I finde it to be 335 , and fuch is chediftance requited.

CHAP. V.

The afe of the Meridian line.

'THe Meridian line, noted with the letter M, may ferue for the more eafie divifion of the plane fea-cart,according to Mercators proiection, For if you fhall draw parallell meridians, each degree being halfe an inch diftant from o:her, the degree of chis meridian line on the Staffe, fhall give the like d grees for the encridians on the chart, from the Equinotiall toward to Pole : and then if through thefe degrees you draw ftraight lines perpendicular to the meridians. they fhall be parallels latitude.

If any defire to have the degrees of his chart larger then thole which I have put on the Scaff, he may take thefe and increafe them in a double, or treble, or a decuple proprortion at his pleature.
; 2 This meridian line being ioyned with the line of c bords, may ferue for the protracion and refolution of fuch right line triangles as concerne latitude, longitude, rumb and diftance in the practice of navigation. As may appeare by this.example.

Suppofe two places given, at in the latitude of 50 gr . D in the latiuude of $52 \mathrm{gr}_{0} \cdot \frac{1}{2}$, the differéce of longitude between them being 6 gr . and let it be reguired to know, firft what Rumbe leadeth from the one place to the other, fecondly how many degrees diflant they area funder.
a I daw a right line $\mathcal{A} \mathcal{E}$, reprefenting the parallell of the place from whencel depart.

2 I take $\sigma \mathrm{gr}$. for the difference of longitude, eicher out of the line of inches, allowing halfe aninch for every degree, or out of the beginning of the Meridian line; (for there the meridian degrees differ very little from the equmottiall degrecs) and the 6 gr . I pricke downe in the parallell from A to E.
3. In A and E, I erect two perpendiculars, $A M$ and $E D_{3}^{?}$ reprefnting the meridians of both places.

4 I take the difference of the latitude from 50 gr .to 52 gr : 30 m . out of the meridian line, and prick it down in the meridians from A vnto M, and from E to D, and draw the righe line M D for the parallell of the fecond place, and the right line A D for the line of diftance betweene both places: fo the angle MA D fhall give the Rumb that leadeth from the one place to the other.

5 To find the quantitie of this angle M AD, I may either make ufe of the Protractor, or elfe of a line of chords, and fo I open my compaffes vito onc of the chords of to gr. and fetting one foote in the point A, with the other I defcribe
an occult arke of a circle, interfecting the meridian in F, and the line of diftance in G ; then I take the chord FG with my compalfes, and meafuring it in the fame live ot chards as beforc, I finde it $56 \mathrm{gr}^{\frac{1}{4}}$: and fuch is the inclination of the Rumb to the Meridian, which is the firft thing that was required.
6 To firide the guantitie of the line of diftance A D, I take it out with my compaffes, and mafuring it in the meridian line, ferting one foote beneath the leffer lacitude, and the other foote as much above the greater latitude, I find about $4 \mathrm{gr}, \frac{1}{3}$ intercepted betweene both feet : and fuch is the diftance upon the Rumb, which is the fecond thing that was required.

But if this cxample were protracted according to the common Sea-chart, where the degrees of the equinoctiall and meridian are both alike ; the Rumb M A D would be found to be aboue 67 gr . and $A D$ the diftance upon the Rumbe about 6 gr . $\stackrel{1}{=}$.

Suppofe farther, that having fer forth from \mathcal{A} toward D, upon the former Rumb of 66 gr .15 m . N $E E \in E$, after the fhip had ruu 36 leagues, the wind changing, ir ran 5 o leagues more upon the feuenth Rumb of $\varepsilon 6 \mathcal{X}$, whofe inclination to the meridian is 78 gr .45 m . And let it be required to know what longitude and latitude the hip is in, by pricking downe the way there of upon the Chart.

Having drawne a blank chart as before, with meridians and parallels, according to the latitude of the places propofed.
I. I would make an angle $M A \mathcal{D}$ of 56 gro 5 m . for the Rumb of $2 \sum E b E$, which is done after this manner: I open my compalies to one of the chords of 60 gr. and fetting one foote in the point A, with the other I deficribe an occult arke of a circle, interfecting the meridian in F; then I take 5σ gr. 15 m . out of the fame line of chords, and pricke them downe from F unto G : fo the right line $A G$ fhall be the Rumb of NEGE.

2 I would take 36 leagues one of the meridimn lime, exCc tending
tending my compaffes from 50 gr .5148 m . or rather from much below, so as above 51 , and prick them downe uponthe Rumb from A anto I; fo the point, I hall reprefent the place wherein the thip was when the winde changed. And this is in the latitude of gI gr .0 m . and in the longitude of 2 gr .21 m . Eaftward from the meridian $A M$.
3 By the fame reafon, I may draw the right line $I K$ for the Rmmb of $E b N$, and pricke downe the diftance of so lcagues from I unto K: fothe point K thall reprefent the place whither the hip came, after the running of thefe 50 leagues: and this is in the latitude of $5^{1} \mathrm{gr} .30 \mathrm{~m}$. and in longitude 6 gr . 16 m . Eaftward from the fift meridian $A M$ and therefore 6 m . Eaitward from the fecond meridian, ED.
But if thefe two courfes were to be pricked downe by the common Sea-chart, the point I would fall in the latitude of 51 gr .0 m. and the point K in the latitude of $51 \mathrm{gr} .30 . \mathrm{ms}$. But the longitude of I would be onely Igr .30 m a and the longitude of K only 3 gr .57 m .more:both thefedo make but g gr . 27 m . for the difference of longitde betweene the firft Meridian A M, and the point K : whereby it fhould feeme that the point K is yet 33^{m}. Weftward from the Meridian of the place to which the fhip was bound,

Such is the difference betweene both thefe charts,

C HAP. VI.

The ufe of the line of Numbers.

THe line of Numbers here noted with 1.2.3.4 unto 10, is compleat in thofe divifions which are betweene I and Io : the other like divifions at the beginning of the line doe ferue ather to anfwere to the firft degrees of the two other lines of Sines and Ta gents then for any recelfity, which is the caute why forne of them ate omittcd. And here as in the ufe of other S cales the figures 1.2.3.4. aid fer downe ufon the line doe fonctimes fignifie themflues alone, fometimes 10: 20, 30. 40. fometimes 100.200. 300,400 , and fo forward as the matter fhall require. The firft figure of every number is alwayes that which is here fet downe, the reft mult be fupplied according to the nature of the queftion.

> I Having two numbers given to findea third in continuall proportion, a fourth, afifih, and So forward.

Extend the compafles from the firft number unto the lecond; then may you turine them, from the fecond to the third, and from the third to the fouth, and to forward.

Let the two numbers given bee 2 and 4 .

$$
\mathrm{C}_{\mathrm{c}} 2
$$

Extend

Extend the compaffes from 2 to 4 , then may you turne them from 4 t0 8 , and from 8 to 16 , and from 16 to 32 , and from 3^{2} to 64 , and from 64 to 128 .
Orifone fooie of the compafies being fet to 64 , the 0 ther fall out of the line, you may fet it to another 64 neerer the beginaing of the line, and there the other foot will reach to 128 , and from 128 you may turne them to 256 , and fo forward.

Or if the two firt number given were ro and 9 : extend the compafies from io at the end of the line, backe unto 9 , then may you turne them from 9 unto 8.1 , and from 8. I unto 7. 29. And to if the two firf numbers given were I and 9 , the thind would befound to be 3 I , the fourth 729 , with the fame extent of the compaffes

In the fame maner, it the two firt numbers were 10 and 12 , you may finde the third proportionall to be 14.4 , the fourth 17.28. And with the fame extent of che compafies, if the two firt numbers were 1 and 12 , the thind would bee found to be $\mathrm{T}_{4} 4$, and the fourch to be 1_{72}.

> 2 Having the exturme nambers given,
> tofindameane proportionall betreene the:

Divide the fpace betweene the extreane numbers into two equall parts, and the foote of the compafies will fay at the meane proportionall. So the extreme numbers given being $8 \& 32$,the mease betweene them will be found to be. 16 , which may be prooved by the former Prop. where it was fhewed, that as 8 to 16 , fo are 16 to 32 .

3 To fird the fquare roote of any num. bergiven.

The fquare roote is alwayes the meane proportionall besweene I and the number given \cdots, \ldots, \quad e found by dividing
dividing the fpace becweene them into two equall parts. So the roote of 9 is 3 , and the rooce of 8 r is 9 , and the roote of 144 , is 12 , and che roore of 144 almont 38 .

If you fuppofe pricks under the number given, (as in Arithmeticall extraction) and the laft pricke to the left hand Thall fall under the laft figure, which will be as ott as there be odde figures the unitie will be beft placed at I in the middle of the line : fo the roote and the fquare will both fall forward toward the end of the line. But if the laft pricke fhall falkinderthelaft figure but one, which will bee as ofe as there be euen figures, then the unitie may be placed at I in the beginning of the line and the fquare in the fecond length or rather the unitie may be placed at soin the end of the lise of the roote and the fquare will both fall backward toward the middle of the line, in the fecond lerigth.
4. Having two extreme numbers given, to find tivo mcane propertionals betwernetherm.

Divide the fpace betwene the two extreme numbers given, into three equall parts. As it the extreme numbers given were 8 and 27. divide the fpace berweene them into three ϵ quall parts, the feete of the compafes will ftand in 12 and 18 .

> 5 To find the cubique roote of tuniziber given

The cubique roote is alwayes the firt of two meane proportionals bectweene I and the number given, and therefore to be found by dividing the fpaceberweene then into batee equali parts.

So the roote of of 1728 will be found to be 12. Therootc
of 17280 is almoft 26 : and the roote of 172800 is almoft 56.

If you fuppofe pricks under the number given after the maner of Arithmeticall extraction, \& the laft prick to the left hand fhall fall under the laft figure as it doth in $\mathbf{1 7 2 8}$, the unitie will be beft placed at i in the middle of the line, and the roote the fquare and the cube will all fall forward toward the end of the line.

If the laft pricke fhall fall vnder the laft figure but one as in 1 7280, the unitie may be placed at 1 in the beginnning of the line, \& the cube in the fecond length or the unitie may be placed at 10 in the end of the line : and the cube in the firt length; or if the cube fall out of the line you may helpe your relfe as in the firt Prop.

But if the laft prick fhall fall under the laft figure but two, as in 172800, then place the unitie alwaies at 10 in the ende of the line : fo the roote the fquare and the cube will all fall backward and be foundin the fecond length between the middle and end of the line.

6 To multiply one number by another.

Extend the compaffes from I to the multiplicator; the fame extent applied the fame way, fhall reach from the multiplicand to the product.

As if the numbers to be multiplied were 25 and 30 : either extend the compaffes from 1 to 25 , and the fame extent will give the diftance from 30 to 750 ; or extend them from 1 to 30, and the fame extent fhall reach from 25 to 750.

7 To divide oxe number by anotber.

Extend the compaffes from the divifor to 1 , the fame extent fhall reach from the dividend to the quoticnt.

So if 750 vere to be divided by 25 , the quatient would befound to be 30.

\& Tbree numbers being given te finde a forrts proportionsll.

This golden rule, the moft ufefull of all others, is performed with like eafe. For extend thie compaffes from the firft number to the fecond, the fame extent fhall give the diftance from the third to the fourth.

As for example, the proportion betweene the diameter and the circumference, is faid to bee fuch as 7 to 22 : if the diameter be ${ }^{1} 4$, how much is the circumference ? Extend the compaffes from 7 to 22 , the fame extent ghall give the difance from 14 to 44 : or extend them from 7 to 14 , and the fame extent fhall reach from 22 to 44 .

Either of thefe wayes may be tried on feverall places of this line ; but that place is beft, where the feete of the compaffes may ftand nereft together.

> 9 Three numbers being given to finde a fourth in a duplicated proportion.
T. If any baue daily ufe of this propoftion be may cawe e another line of 2 umbers to be made?

This propofition concernes queftions of proportion betweene Lines and Superfices; where if the denoinination be oflines, extend the compaffes from the firf to the fecond nmmber of the fame denomination : fo the fame extent being doubled, thall give the diftance from the third number unto the fourth.

The diameter being 14, the content of the circle is 154: the diameter being 28, what may the content be? Extend the compafés from'14 to 28 , the fame extent doubled will reach from 154 to 616 . For firft it reacheth from 159 unto 308; and tarning the compafles once more, it reacheth from 308_{3}. unto 616 ; and this is the content required.

But if the firt denomination be of the fuperficiall content;, extend the compaffes unto the halte of the diftance, betweene the firt number and the fecond of the fante denomination: fo the fame extent fhall give the diflance from the third to the fourth.

The content of a circle being 154 , the diamerer is 14 : the content being $6 \mathbf{x} \sigma$, what may the diameter be? Divide the diflance betweene ≥ 54 and 616 into two equall "parts, then fer one foote in 14 , the other will reach to 28 the diameter required.

> 10 Three sumbers being given to find a fourth inasriplicated proporitios.

This propofition concernech guctions of proportion betweene lines. and folldds; where if the firft denomination bee of lines, extend the compafles from the firit number to the fecond of the fame denomination: fo the extenc being tripled, flall give the diftance from the third number unto the fourth.
Suppore the diameter of an iron buller being 4 inches, the weight of it was 9 ": the diameter being 8 inches, what may the waight be? Extend the compaffes from 4to 8, the fame extent bcing tripled, will reach from 9 unto 72 . For frit it reacheth from 9 uuto 18 ; then from 18 to 36 ; thirdly from 36 to 7^{2}. And this is the weight required.
But if the firf denomination flatl be of the Solid content; or of the weight, extend the com palfes to a third part of the dittancé betweene the firft number and the fecord of the fame denomination fo the fame extent hat give the difance from the thid number unto the fourth.

The weight of a cube being 72 e, the fide of it was 8 in:ches :the weight being 9 , what may the firdebe? Divide the diffaice betweene 72 anid 9 , inot three equall parts ; then fet oine foote to 8 , they o her will reach to 4 , the fide required.

CHAP

CHAP. VII.

The ufe of the line of artificiall Sines.

THis line of fixes hath fuch ufe in finding a fourth propor(ionail, as the ordinary Canos of Simes: and the maner of finding it, is alwayesfuch as in this exannple.

> As the fine of 90 gr . unto the fine of 30 g . So the fine of 20 gr , unto a fourth fine.

Extend the compaffes from the Sine of 90 gr . unto the fine of 30 gr . the fame extent will reach from the fine of 20 gr . unto the fine of 9 gr .50 m .

Or you may extend them from the fine of 90 gr . unto the fine of 20 gr . the fame extent will reach from the fine of j° gr . unto the fine of 9 gr . 50 ms . and luch is the fourth proportionall fine required,

In like maner if the queftion propofed were
As the fine of 30 gr unto the fine of 52 gr . So the fine of 38 gr . to a fourth fine.

Extend the compaffes in the line of fines from 30 gr . unto 52 gr ; the fame extent fhall give the diftance from 38 gr : uno to 76 gr . Or extend them from 30 gr , unto 38 gr . the fame extent will reach from 52 gr . unto $7^{6} \mathrm{gr}$. which is the foarth proportionall fine required.

And thus may thereft of all finicall proportions bee urought two wayes. The minutes which are wanting in the firt degree, may be fupplied by the line of 2 umbers, as I thew in the next Chapter.

Dd

CHAP。

CHAP. VIII.

The ufe of the line of artificiall Tangents.

THis line of T angents hath like ufe, but commonly ioy-: ned with the line of fines : the manner of working by it, may appeare by this example.

> As the Tangent of 38 gr .30 m .
> is the Tangent of $23 . \mathrm{gr} .30 \mathrm{~mm}$.
> So the Sine of $g 0$ or .
> to a fourth Sinc.

This Prop. and fuch others upon two lines, may bee wrought two wayes. For extend the compaffes from the Tangent of 38 gr .30 m . to the Tangent of 23 gr .30 m ; the iame extent hall give the diftance from the fine of 90 gr . to the fine of 33 gr .8 m . Or elfe extend them from $38 \mathrm{gr} .30 . \mathrm{m}$. in the Tangents unto $90 . \mathrm{gr}$. in the line of Sizes; the fame extent from the Tangent of 23 gr . 30 m . fhall reach to the fine of 33 gr .8 m . which is the tourth proportionall fine required.

And this croffeworke in many cales is the better, in regard the tangents which hould paffe on from 40 gr . to 50 $g r_{0}$ and fo forward, doe turne backe at 45 gr . Thefe two lines of Sixes and Tangents, may ferue for the refolution of all fphericall triang!es, according to thofe Canons which I have fet downe in the ufe of the Sector. Oaely two cafes the 19 and 20 will bee more eafily refolued by that which followeth in the laft Chapter of this booke.

Or if at any time one meete with a Secamt, Let him account the fine of 80 gr . for a Secant of 10 gr and the fine of 70 gr . for a Secant of 20 gr . and fo take the fine

> As if the propofition were, As the Radius to the lecant of $5 \mathbf{1} \mathrm{gr} .30 \mathrm{~m}$.
> So the fine of 23 gr .30 m . to a fourth fine.

Extend the compaffes from the Radius that is the fine of 90 gr . to the fine of 38 gr .30 nL . the fame extent will give the diftance from the fine of $23 . \mathrm{gr} .30 \mathrm{~m}$. both to the five of $14 . \mathrm{gr}_{.} 22 \mathrm{~m}$ to the fine of 39 gr .50 m . But in this cafe, the fine of 39 gr so m . is the fourth required. For the firf number being leffe then the fecond, that is, the Radius leffe then the fecant, the fine of 23 gr .30 m which is the third, mult allo be leffe then the fourth.

If the fourth proportionall number thall at any time fall out of the line, by reafon of the minutes that are wanting in the firft degree; it may be fupplied by refoluing the third number given into minutes, and then working by the line of numbers.

As if the propofition were,

> As the Sine of 90 gr. to the Sine of io gr . Solthe fine of 5 gr. to a furth fine.
> Or the Tangent of $5 g r$. to a fourth Tangent.

Extend the compaffes from the fine of 90 gr . unto the fine of 10 gr . the fame ϵ xtent will reach from the Sine or Tangent of 5 gr . beyond the end of the ftaffe. Wherefore I refoive thefe 5 gr . into 300 minutes and find the former extent to reach in the line of numbers from 300 m . unto 52 m . and fuch is the fourth proportionall reguired.

If the the extent from the fine of 90 gr . unto the fine of 10 gr . be too large for the compafles we may ufe the Sine of

And fo exterding the compaffes from the fine of 5 gr .44 ms. unto the fine of 10 gr . we fhall finde the fame extent to reach in the line of Numbers from 300 unto 52 as beforc.

And by the fame reafon wee may uic the tangent of 5 gr . 43 m . in fead of the tangent of 45 gr . as I farther thew in the rext Cbapter.

CHAP. IX.

The we of the line of Sines and Tangents ioyned with the line of N umbers.

THe lines of Sines and Tangents another like ufe joyned with the the line of \mathcal{Z} umbers, efpecially in the refolution of right line triangles, whire the angles are meafured by degrees and minutes, and the fides meafured by abfolute numbers, whereof I will fet downe thefe propofitions.

1 Having three angles and one fide, to finde the two other
fides.
Ifit be a rectrangle triangle wherein one fide about the right angle being knowne it were required to finde the other. This may be found by the line of Tangents and line of Numbers. For

As the Tangent of 45 gr . to the tangent of the angle oppofite to the fide required, So the number belonging to the fide given
to the number belonging to the file required.
As in the rectariglen A B Chowing the angle $C A B$ to

be 9 gr . 15 m . and the fade AB to be 135 parts; if it were required to find the other fide $B C$ about the right anglace.

Extend the companies from the Tangent of 45 gr . unto the Tangent of 9 gr .1 m . the fame extent will reach in the line of Numbers from 35 unto 22 ,and foch is the length of the fine BC . Or in the croffe works extend the compaffes from the Tangent of 45 gr . unto 135 in the line of numbers the fame extent will reach from the Target of 9 gr .15 m . unto 22 in the line of $\mathbf{N u m b e r s}$.

If this extent from the tangent of 45 gr . to 9 gr .15 ms or 135 parts bee too large for the companies, you may offs. the Tangent of 5 gr .43 m . instead of che Tangent of 45 gr . becaufe both alike aufwer to 10.8 C , parts in the line of Numbers.

And then either extend the companies from 5 gr .43 m . unto 9 gr .15 m . in the line of Tangents the fame extent will reach from 135 unto 22 in the line of numbers, or elfeextend them from the tangent of 5 gr .43 m . unto 135 in the line of Numbers the fame extent will reach from the Tangent of 9 $\mathrm{g}^{2} .15 \mathrm{~mm}$. unto 22 in the line of Numbers as before.

In like manner if the fame rectangle ABC knowing. the angle A C 3 to be 80 gr .45 m , and the file BC to bee 22 parts, it were required to find the other file $B A$. Yon may ute the Tangent of 84 gr .17 ms . inftead of the Tangent of 45 gr . and fo the fine BA will be found to bee 35 parts.

This holder for finding of the fides of rectangle triangles. but generally in all triangles, whither they be right or obtufe angles having three angles and one fide wee may finder the two other fides by the line of Sines and line of \mathcal{A} embers.
> 'As the Sine of angle oppofite to the fide given; is to the number belonging to that fide given, So the Sine of the angle oppolite to the fide reguired, to the number belonging to the fide required.

As in the example of the fourth Chapter: of this booke, where knowing the diftance betweene two ftations at A and D to be 100 paces, he angle $B A C$ ta be 43 gr .20 malid the angle $\cdot \mathcal{B} \mathcal{D}$ C to be 58 gr . it was required to find the diftance C B.

Firft having thefe two angles, I may finde the third angle $A B D$ to be 44 gr .40 m , either by lubftraction or by complement unto $\mathbf{1 8 0}$. Then in the Triangle $\mathcal{B} A D, 1$ have thiee angles, and one fide, whereby I may finde both $A B$ and $D \mathscr{B}$.

I know the angle $A B D$ oppofite to the meafured fide $A D$ to bee 14 gr .40 m . and the angle $A D B$ oppofite to the fide required, to bee $122 \mathrm{gr}:$ wherefore I extend the compaffes in the line of Sines from 14 gr .40 m . unto 122 gr . or (which is all one) to 58 gr . (for after 90 gr . the fine of 80 gr . is alfo the fine of 100 gr . and the fine of 70 gr . the fine of 110 gr . and fo in the reft) fo thall I finde the fame extent to reach in the line of sumbers, from 100 unto 335 . And fuch is the diftance required betweene \mathcal{A} and \mathcal{B} :

In like maner if I extend my compaffes from the fine of $14^{\prime} \mathrm{gr} .40 \mathrm{~m}$. to the fine $43 \mathrm{gr} .20 . \mathrm{m}$. the fame extent will reach in the line of \mathcal{N} umbers from 100 to 271. And fuch is the diftance betweene D and B.

Or in croffe worke, I may extend the compaffes from 14 2 gr .40 m . in the Sines, unto 100 parts in the line of 2 tim . bers: fo the fame extent will give the diftance from 58 gr.to 335 parts, and from 43 gr .20 m . to 271 parts.

2 Having two fidesgiven, and one ingle oppogite to either of thefe fides, to finde the other. two Argles and the third fide.

As the fide oppofite to the angle given,
is to the fine of the angle given:
Sol:the other fide given,
to the fine of that angle to which it is oppofite.

So in the former triangle, having the two fides $A B 335$ paces, and AD ioo paces, and knowing the angle ADB, which is oppofite to the fide $A \mathrm{~B}$, to be 122 gr . I may find the angle ABD, which is oppcfite to the other fide AD. Forif 1 extend the compaffes from 335 to 100 in the line of Numbers, 1 hall finde the fame extent to reach in the line of Sikes from 122 gr to 14 gr .40 m ; and therefore fuch is the angle A B D.

Then knowing thefe two angles ABD and A D B,I may find the third angle $B A D$ either by fubtraction or by complement to 180 , to be 43 rr .20 m ; and having three angles and two fides, I may well finde the third fide $D_{B, b y}$ the former. Prop.

This may be done more readily by croffe worke. For if I extend the compaffes from 335 parts, in the line of numbers, to the fine of 122 gr . the fame extent will reach from 100 parts to the fine of 14 gr .40 m . and backe from 43 gr . 20 mL . to 271 parts ; and luch is the third fide D B.

> 3 Having two fides and the angle betweene them, to find the two otber angles and the tbird Jide.

If the angle contained betweene the two fides bee a right angle, the other two angles will be found readily by this Ca. non.

As the greater fide given, is to the leffer fide :
So the rangent of 45 . gr.
to the tangent of the leffer angle.
So in the rectanle triangle $A I B$, knowing the fide $A I$ to be 244, and the fide $I \mathcal{B}$ to be 230 : if I extend the compaffes from 244 to 230 in the line of numbers, the fame exchat will reach from 45 gr . to about $43 \mathrm{gr}, 20 \mathrm{mo}$ in the line
of Tangents; and fuch is the leffer angle $\mathcal{B} \subset \mathcal{A} I$, and the complement 46 gr .40 m , hewes the greater angle $A B I$. The angles being knowne, the third fide A B may bee found by the firft Prop.

So likewife in the ex ample of the third Chapter of this booke, concerning taking of angles by the line of Inches, where the parts intercepted on the Staffe being 20 Inches, and the parrs on the Croffe 9 Inches, it was required to finde the angle of the altitude. For,

I may extend the compaffes in the line of 2 vumbers, from 20 unto 9 , the fame extent will reach in the line of Tangents, from 45 gr . to 24 gr .14 m .

Or in croffe worke,
I may extend the compaffes from 20 parts in the line of Numbers to the tangent of 45 gr ; the fame extent hall give the diftance from 9 parts unto the Tangent of 24 gr . 14 m.

And fuch is the angle of the altitude required.
If the parts intercepted on the ftaffe being 20 inches and the parts on the Croffe 9 tenth parts of an inch it were reguired to finde the angle of the altitude. Here the angle would be much leffe, and the 9 would fall out of the line of numbers.

To fupplie this defect, I ufe the Tangent of 5 gr .43 . m. inftead of the tangent of 45 gr . And then if I extend the compaffes in the line of Numbers from 20 unto 9 the fame extent will reach in the line of Tangents from 5 gr .43 m . unto 2 gr .35 m .

Or in Croffe worke if I extend them from 20 partes in the one line of numbers unto the Targent of 5 gr .43 m. the fame extent will give the diftance from 9 in the line of Numbers unto the Tangent of 2 gr .35 m .

And fuch is this angle of the altitude required.
But if it be an obligueangle that is contained betweene the the two fides given. the triangle may be reduced into two reitangle triangles and then refolued as before.

As in the tiangle $A D B$, where the fide $A B$ is 335° and the fide AD aco, and the angle $\mathrm{BAD}^{\mathrm{B}} 43 \mathrm{gr} .20 \mathrm{~m}$: if 1 let downe the perpendiculor $D H$ upon the fide $A B$, 1. thall have two rectangie triaigles, A. HD, D H B; and in the rectangle $A H D$, the angle at A being $43 . g r .20$ m. theotherang'e A DH will be $46 . \mathrm{gr} .40 \mathrm{~m}$; and with the feangles ard the fide es D, I may find both $A H$ and DH , by the firf Prop.

Then taking $A H$ out of $A B$, therc remaines HB for the fide of the rectangle $D H B$; and theretore with this fide $H B$ and the othir fide H D, I may finde both the angle at B, and the third fide $D B$, as in the former pare of this Prop.

Of I may find the angies required, without letting downe any perpendicular, For,

As the fumme of the fides, is to the differcnce of the Gides:
So the tangent of the halfe fumme of the oppofite angles,
to the Tangent of halfe the difference betweene thofe angles.

As in the former triangle $\mathcal{A D} B$, the fumme of the fides $A \mathrm{~B}, A \mathrm{D}$, is 435 , and the difference betweene them $\mathbf{2 3 5}$; the angle coatained $43 \mathrm{gr} \cdot 20 . \mathrm{m}$; and therefore the fumme of the two oppofite angles 136 gr .40 m . and the halfe fumme 68 Gr .20 m . Herenpon I extend the compafies in the line of $N u m b e r s$ from 455 to 235 , and I finde them to reach in the line of Tangents from 68 Gr .20 m . unto 53 Gr .40 m ; and fuch is the halfe difference betweene the oppcfite angles at B and \mathcal{D}. This halfe difference being added to the halfe fum, doth give $122 G r$. for the greater angle $A D B$: and being fabtrafted, it leaueth 14 Gr .40 m . for the leffer anglc A B D. Then the three ang!es being knowne, the third fide E D may be found by the firt Prop.

4 Having the three fites of a right line triangle, to find the three angles.

Let one of the three fides given be the bafe, but rather the greater fidi, that the perperdicular may fall within the triangle; thengather the fiumme, and the difference of the two other fides, and the proportion will hoid.

> As the bafe of the triangle,
> is to the fumme of the fides:
> So the difference of the fides
> to a fourth, which being taken forth of the bafe, the perpendicular hall fall on middle of the remaind. r .

As in the former triangle $A D B$, where the bafe $A B$ is 335 , the fumme of the fides AD a id D B 371, and the difference of them 171. If Iexend the compaffes in the hae of ${ }^{2}$ Lumbers from 335 unto 371 , I fhall finde the fame extent to reach from 171 unto $\mathbf{1 8 9} 4$. Thas fourth number I take out of the bate 335.0 , and the remainder is 145.6 , the halfe whereof is 72, 8, and doth the w the diflance from A unto H, where the perpendicular fhall fall, froin the angle D, upon the bafe $A \mathrm{~B}$, dividirg the former triangle $\mathrm{A} D \mathrm{~B}$ into two right angle triangles, D H A and DHB, in whi h the angles may be found by the fecond Prop.

And this may fuffice for the right line triangles. But for the more eafie protraction of thefe tria'gles, I will fet downe one propofitio 1 more concerning chords.

> 5 Having the femidiameter of a circle, to finde the chords of eve-
> ry carke.

> As the fine of the Semiradius of 30 gr . to the fine of halfe the arke propoted : So is the femidiamiter of the circle given, to the chord of the fame arke.

As if in the protracting the former triangle AD B , it were required to find the length of a chord of 43 gr . 20 mm . agreeing to the femidiameter $A E$, which is known to be 3 inches. The halfe of 43 gr .20 m . is 21 gr .40 m ; wherefore I extend he compafles from the fine of 30 gr . to the fine of 2 z gr .40 m . and I finde the fame extent, to reach in the line of Numbers from 3.000 parts to 2.215 ; which fhewes, that the femidiameter being 3 inches, the chold of 43 gr .20 m . will be 2 inches and 215 parts of 100 .

In like maner the chord of 58 gr . agreeing to the fame fe midiameter, would be found to be 2 inches and 909 parts. For the halfe of 58 being 29 ; if I extend the compaffes in the line of Sipes from $3 \mathrm{~g} g \mathrm{r}$. to 29 gr . the fame extent will reach in the line of λ umber from 3.000. unto 2.909.

Or in croffe worke, if I extend the compaffes from the Sine of 30 gr . to 3 : 000 in the line of \mathcal{E} rimbirs, 1 thall finde the fame c.xtent to reach from 21 gr .40 m, to 2.215 parts, and from $29^{\prime g r . t o} 2909$ parts, and from $7 g^{2} .20 \mathrm{~nm}$. to 765 . parts ; for the chord of 14 gr .40 m . for the third angle ABD.

CHAP:

CHAP. X.

The use of the line of reverfed Sines.

THis line of verled Signes is no necflary line. For all triangle's, both right lined and fohericall, may be retolued by the three for mer line, of Nuinbers, Sines and Tangents; yet ithought good to put it on the Staffe for the inore eafie finding of aun angie hiving chree fides, or a fide liaving chree angles of a phiericalltriangle given.

Suppofe the three fides to be, one of them roogr. the other 78 gr . and the third 38 gr .30 m . and lec it be required to find the angle, whofe bale is 110 gr ."

I firlt adde them together, and trom halfe the fumme fubtract the bafe, noting the difference after this maner.

For fo the proportion will holde,
I. As the Radius the Sine of the one fide So the Sine of the other Side to che fourth Sine.

2 As this fourth Sine to the Sine of the halfe Summe So the Sine of the difference to a feyenth Sine.

3 The meane proportionall betweene this feventh fine and the Radivs will fhew the fine of the complement of halfe the angle required.

Ee 3
This

35 The ufe of the line of verfed sines:
This done, I come to the Stiffe, ard extend the compaffes from the fi eo 90 gr . to the fine of 78 gr . which is one of the fides; and applying this ex'ent from the fine of the other fide 38 gr .30 m . 1 find it to reach toa fourth fine, about 37 gr .30 m . From thi tourth fine of 37 gr .30 m . I extend the compaffes againe, tothe finc of the talte fumme 113 gr .15 m . (which is all one with the fine of $66 . \mathrm{gr} .45 \mathrm{~m}$) and this ftcond extent will reach from the fine of the difference 3 gr . 15 m . to the fine of $4 \mathrm{gr} .54^{\mathrm{m}}$.
Then to finde the meare proportionall fine betweene this feventh fine of 4 gr .54 m . and the fine of 90 gr .1 might divide the foace betweene them into two equall patts, and fo I fhould finde the compaftes to flay at 17 gr . whiofe complement is 73 gr a a d che double of 73 gr . is 146 gr . the angle oppofite to $110 \mathrm{~g} r$. which was required.
But becaufe this divifion is fomewhat troublefome I have therefore added this line of verfed Sines that having found che feuenth Sine you might looke over againf it and there finde the angle. And fo in this example having found the feventh fine to be 4 gr .54 m . over againft this fine you fhall finde ${ }^{2} 46 \mathrm{gr}$, in the lipe of verfed Sipes for the angle requircd as before.

39

THE
 SECOND BOOK OFTHE CROSSESTAFFE.

Of the use of the former lines of proportion more particularly ex. amplified infeverall kind.

THe former Books containing the general ufo of each line of properion, may bee fulticient for all thole which know the rule of Three, and the doctrine of triangles.

Bat for others, I fuppofe it would bemore difficult to finde either the dec! ination of the Sone, or his amplitude, or the like, by that which hath been Said in the use of the line of Sines, ua'effe they may have the particular proportions, by which fuck propofitions are to be wrought'.

Ald therefore for their fakes I have adjoyned this lecond books, containing fevirall proportions for propofitions of ordinary fe, and fer them downs in fuch order, that the Reader confidering which is the firm of the three numbers given, may eafily apply them to the Sector, and aldo refolue them by Arichmerique, beginning with thole which require help only of the line of 2 yumers.

 - 1

$$
\left[\begin{array}{c}
1 \\
-2 \\
-3 \\
-6 \\
-6 \\
-7 \\
-7 \\
-10 \\
-11
\end{array}\right.
$$

C HAP. I.

The uje of the line of Numbers in broade. mea/ure, Such as boord, glaße, and the like.

THe ordinary meafure for bredth and length are feete and inches, each foote divided into 12 inches, and euery inch into halues and guarters, which being parts of feverall denominations, doth breed much trouble both in Arithmeticke and the ufe of inftuments.

For the auoiding whereof, where I may prevaile I give this coufell, that fuch as are delighted in meafure would ufe \{eucral lines, firtt a line of inchmeafure, wherin euery inch may be divided into 10 or 100 parts; fecondly a line of foot meafure, wherein every foote may be divided into 100 or 1000 parrs, both which lines may be fet on the fame fide of a two foote ruler, after this or the like manner.

Then if they be to give the content of any fuperficios or folid in inches, they may meafure the fides of ir by the line of inches and parts of inches; but if they be to give the content in feete, it would be more cafie for them to meafure thofe fides by the foote line and his parts.

For example, let the length of a plane be 30 inches, and the bredth 21 inches and $\frac{6}{10}$ of an inch; this length multiplied into the bredth, would give the content to bee 648 inches:
inches: but if I were to finde the content of the fame plane in feet, I would meafurethe fides of it by the foote line and his parts $;$ fo the length would proue to bee 2 feete $\frac{50}{\text { foion }}$, and the bredth I foote $\frac{80}{100}$, and the length multiplied by the bredth, cutting off the foure laft figures, for the foure figures of the parts, would givecontent to bee 4.5000 , which is 4 foote and 5000 parts of a foote, divided into 10000 parts.
21.6

30.0 \quad\begin{tabular}{l}
2.50

648.00

\quad

20000

250
\end{tabular}

The like reafon holdeth for yards and eines; and all other meafures divided into 10,100 , or 1000 parts.

This being prefuppofed, the worke will be more eafie both by Arithmeticke and the line of \mathcal{T} mmbers,as may appeare by thefe propofitions

I Having the bredth and length of an oblong fuperficies given in inch-meafure, to firde the content in incbes.

As I inchunto the bredth in inches. So the length in inches unto the content in inches.

: Suppofe in the plane A D, the bredth \mathcal{A} C to be 30 inches; Ff and from x unto 30 , the fame extent will reach from 183 unto 5490 ; or extend t^{\prime} en from 1 unto 183 , the fime extent will reach from 30 unto 5490 : So both wayes the content required is found to be 5490 inches.

As i unto 30% fo are 183 unto 5420 .
2 Having the breadth ana lengtly of any oblong fisperficies given in inches, to finde the
content in fette.

As 144 inches vnto the breadth in inches:
So the length in inches unto the content in feet.
And thus in the former plane A D, working as before, the 1 content will be found to bee 38. 125, which is 38 foote and $\frac{5}{3}$ of a foote.

As I44 unto 30 : fo are 183 unto 3.8. 125 .

> 3 Having the length and breadth of any oblong fuperficies given in fooie meafure, to finde the content is feet.

As i footeunto the bredth in foote meafure: So the length in feete unto the content in f.et.
And thus in the former plane AD, the bredh will be 2 feete 50 parss, and the lengt 15 foote 25 parts; then working as before, the content will be found to be 38 . 225 : As I unto 2. 50: fo are 15.25 unto 38.125 .

4 Having the bredth of any oblong fuperficies given in inches asd the length in foote meafure, to find the coritent in feet.

As 12 inches to the bridth in inches: So the length in feete to the gontent in feet.

So alfo in the former plane, the content will be found to be 3 8. 125.

As the 12 unto $30:$ fo are 15.25 unto 38.125.
s Having the briadsh of an oblong fuperficies givgen in inches, to firde the length of a foot fuper. ficiall in inchmeajure.

As the breadrh in inches, unto 144 inches:
So 1 foore vnto the length in inch meafire.
So the bredth being 30 inches, the length of a foote will be found to be 4 inches 80 parts, the length of two feet 8 inches 60 parts.

As 30 vnto 44 : fo are I unto 4.80.
6 Hsving the bredth of an oblong fuperficies given in feet, to find the length of a foote faperfictall infoor mesfirre.

As the bredch in foote mealure to 1 foote:
So the number of feet to the length in foot meafure.
So the breadth being 2 foote 50 parts, the length of foot will be found to be 40 parts, the length of 2 feet 80 parts, and the length of 3 feete 1 foot 20 parts, $\& c$.

$$
\text { As } 250 \text { unto } 1: \text { fo are } 1 \text { unto } 0.40
$$

7 Having the length and breadth of an oblong fuperficies, iof finde the fide of a gare equall to the oblong.

Divide the fpace betweene the length and the bredth into two equall parts, and the foote of the compaffes will flay at the fide of the fquare.

So the length being 183 inches, and the bredth 30 inches, the fide of the fquare wil be found to be almoft 74 inches and 10 parts of 100 .

Or the bredth being 2 foote and 50 parts, the length 15 foote and 25 parts, the fide of the fquare will be found to be about 6 feet and 17 parts.

As 30 unto 74. 10. fo are 74. Io unto 183.027. And as 2.50 unto 6.174 : fo are 6.174 unto 15.247°

8 Having the diameter of a circle, to find the fide of a fquare equall to that circle.

As 10000 to the diameter:
So 8862 unto the fide of the fquare.
So the diameter of a circle being 15 inches, the fide of the: fquare will be found about 13 inches and 29 parts. As 10000 unto 8862 :fo are 15 unto 13.29.

9 Having the circumference of a circle to finde.
the fide of a Square equall to the.
fame circle.
As 10000 to the circumference ::
So 2821 to the fide of the fquare.
So the circumference of a circle being 47 .inches I_{3} parte, the fide of the fquare will be about I_{3} inches 29 parts.

As 10000 unto 2821 : fo are 47 . I 3 unto 13.29.
Io Having the diameter of a circle, to finde. the circumference.

11 Having the circumferesce of a circle, to: firde the diameter.

As 1000 to the diameter: So $3{ }^{1} 4^{2}$ to the circumference;

So the diameter being 15 inches, the circumference will be found abcut 47 inches 13 parts: or the circumference being 47. 13, the diameter will be 15 .

CHAP. II.

The ufe of the line of N umbers in the meas fure of land by pearch and acres.

1. Having the bredth and length of an oblong for, perfices, given in perches, tofirde the content in perches.

As I perch to the bredth in perches: So the length in perches to the content in percheso

So in the former plane $A D$, if the bredth ' $A C$ be 30 perches, and the length $A B 183$ perches, the content will be found to be 5490 perches.

2 Having the lesgth and breadth of an oblong fisperficies givern in perches; to finde the content in acres.

As 160 to the bredth in perches: So the length in perches to the content in acres.

So in the former plane $A D$, the content will be found ico. be 34 acres, and 3 I centefms or parts of an 100. As 160 unto $30: 10$ are 183 unto $34 \cdot 31$.

To augment a fuperficies in a proportion,
To diminihh a fuperficies in a proportion given:
Ef 3
3. HAS

It being troublefome to divide the content in perches by 160, we may meafure the length and breadth by chaines, each chaine being 4 perches in length, and divided into roolinkes, then will the worke be more eafie in A rithmetique. For

As ro to the bredth in chaines: So the length in chaines to content in acres.

F And thus in the former plane $A D$, the breadth $A C$ will be 7 chaines 50 linkes, and the length $A B 45$ chaines 75 links; then working as before, the content will bee found as before, 34 acres 3 I part.

4 Having the perpendicular and bafe of a iriangle given in perches, to find the content in acres.

If the perpendicular goe for the bredrh, and the bafe for the length, the triangle will be the halfe of the oblong, as the triangle CE D is the halfe of the oblong A D, whofe content was found in the former Prop. Or without halfing?

As 320 to the perpendicular:
So the bafe to the content in acres.
So in the triangle CED, the perpendicular being 30 , and the bafe 183 , the content will be found to be about 17 acres and 15 parts.
s Having the perpendicular and base of a triangle given inchaines, to find the content in acres.

As 20 to the perpendicular:
So the bafe to the content inacres:

And fo the tria gle C E D, the perpendicular EF being $7 \cdot 50$, and the bafe CD $45 \cdot 75$, the content will be found as before to be about 17 acres 15 parts.

6 Hauing the content of a fuperficies after one kind of perch, to finde the content of the fame fuperficies according to another kind
of poarch.

> As the lengrh of the fecond perch to the length of the firt perch: So the content in acres to a fourth number ; and that fourth to the content in acres requirtd.

Suppofe the plane A D meafured with a chaine of 66 feete $_{3}$ Or with a pearch of 16 feete and an hal'e, contaised 34 acres 31 parts; and it were demanded how many acres it would containe if it were meafured with a chaine of 18 foot to the perch : thefe kind of propoftionsare wrought by the backwaid ru'e of three, after a duplicated proportion. Wherefore I extend the compaffes from 16.5 unto 18.0 , and the fame extent doth reach backward, fiff from 34.31 to 3145 , and then from 3 I. 45 to 28.84 , which hewes the content to be 28 acres 84 parts.

> 7 Having the plot of a plaine with the contextion acres, to puta the fale by whoich it was plotited.

Suppofe the plane, A D contained 34 acres 31 centefmes; If I fhould meafure it with a fale of 10 in the inch, the lungth $A B$ would be 38 chaines and ab ut 12 centefmes, and the bredth $A C C$ chaines and 25 centefmes; and the content would be found by the third Prop. of this Chapter, to be abour, 23 acies 82 parts, wheras it fhould be 34 acres 31 parts. Where

Wherefore I divide the diftance betweene 23.82 , and 34 ? 31, upon the line of numbers into two equall parts; then fetting one foote of the compaffes upon 10 , my fuppofed fcale, I find the other to extend to 12, which is the fcale required.

> s Having the length of the furlong to finde the breadth of the acre.

As the length in perches to 160 . So I acre to the bredth in perches.

So the length of the furlong being 40 perches, the bredth of an acre will be found to be 4 perches. If the length be 50 the bredth for one acre muft be 3.20 . the bredth for two acres 6, 40 .

Or ifthe length be meafured by chaines.
As the length in chaines unto 10
So I acre to his bredth in chaine meafure.
So the length of the furlong being is Chaines so Linkes, the bredth for one acre will bee found to be 80 Links, the bredeh for two acres I Chaine 60 Links.

As 12.50 unto $10:$ fo 1 unto 0.80 .
Or if the length be meafured by feet meafure:

As the length in feete unto 43560 .

So 1 acre to his bredth in foot meafure,
So the length of the furlong being 792 feet, the breadth for oneacre will befound to be $5 s$ feet, the bredth for two acres rio feet.

CHAP. III.

There of the line of Numbers in folia measure, Such as fine, timber, and the like.

1 Having the gide of a fare equal to the base of any folidgiven in inch measure to find the length of a foot Solid in inch measure.

THe fide of a fquare equall to the bale of a folid, may bee found by dividing the face betweene the length and bredth into two squall parts, as in the 7 Prop. of broad mafurs. Then

As the fide of the fquare in inches to 41. 57 : So is I tote to a fou ch number; and that fourth to the length in inches.

So in the folide $A H$, the file of the square equal to the bale $E C$, being about 25 inches 45 parts, the length of a toot fold will be found about 2 inches 67 parts, and the length of two foot folid 5 inches 33 parts.

As 25.45 unto 4157 : fo 1. 00 unto 1. 63 : and fo are 1.63 unto 2.67 .

2 Having the fide of a fquare equall to the bafe of any $s c^{\circ}$ lid givers in foote meafure, to find the length of a foot folid in foot meafure.

As the fide of the fagare in feet unto 1 : So is i unto a fourth number;
And that fourth to the length in foot meafure".
So in the folid $\mathscr{A} H$, the fide of the fquare equall to the bafe $E C$, being about 2 foote 120 parts, the length of a foot folid will be found about $\mathbf{2 2 2}$ parts of a foote.

As 2.120 unto 1.000 : fo 10.000 vnto 0.471 \% and fo are 47 I unto 222 .

3 Having the bredth and depts of a quuared folid gi: ven in foot mieafure, to finde the length of a foot folid in foote meafure.

As I unto the bredich in foote meafure: So the depth in feet to a fourth number; which is the content of the bale in foot meafire. Then

As this fourth number unto I: So I unto the length in footemeafure.

Soin the folid $A H$, the bredth being 2 foote so parts, the depth i foot 80 parts, the content of the bafe $E C$ will bee found 4 foote so parts, and the length of one foot folid abour 222 parts, the length of two foot folid about 444 parts of 1000.

As I. 00 anto 3. $50:$ fo are 1.80 unto 4.50. As 4,50 unto 1,00 if 0 d. 000 unto 0.222 .
4. Having the bredth and depth of a quared folid gio ven in inches, to finde the length of a foot Solid in inch meafure.,

As I hath to the breadth in inches:
So the depth in inches to a fourth number;
which is the content of the bafe in inches. Then
As this fourth nurnber unto 1728 :
So I unto thelength of a foot in inch mearure:
So in the folid $A H$, the breadth $A C$ being 30 inches, and the depth $A E 21$ inchis 60 parts, the content of the bale $E C$ will be found to be 648 inches, and the length of a foote folid about 2 inches 67 parts, the length of a foot folid's inches 33 parts.

As runto 21. 6: fo 30 unto 648 ;
As 648 unto 728 ; fo 1 unto $266 \%^{\circ}$.
Or as I2 to the bredth in inches; So the depth in inches to a fourth number:

As this fourth number to 144 ;
So I unto the length of a foote folid in inch meafure:
So in the folid A \&,the breadth being 30 inches, the depth 21 inches 6 parts, the fourth number will be found to be 54, and the depth o foote folid 2 inches 67 parts.

> AS 12 unto 21.6 ; fo 30 unto 540
> As 54 unto 144 ; 10 I unto 2.667 :

$$
G g_{2} \quad 3 \text { Hig }
$$

s Having the fide of a fquare equall to the bafe of aizy folid,

 and the leng th thereof gives in inch meafure, $t o$ find the content thereof infeet.As 41. 57 to the fide of the fquare in inches: So the length in inches to a fourth number; and that fourth to the content in foot meafure.

So in the folid $A H$, the length $A B$ being 183 inches, and the fide of the fquare equall to the bafe $\mathcal{E} C$ about 25 inches 45 parts, the fourth number will be found abour 112 , and the whole folid content about 68 feet 62 parts.

As41. 57 unto 25.45 : fo 183 unto 1 I 2 : and fo are 1×2 unto 68. 62 ,

6 Having the fide of a gquarc equall to the bafe of any fo-
lid, and the length thereof given in foot meafure,
tofind the conters thercof infeèt.
As \mathbf{y} to the fide of the fquare in foot meafure: So the length in feet to a fourth number; and that fourth to the content in foot meafure.

So in the former folid $A H$, the fide of the fquare equall to the bafe $A E$, being about 2 foot 12 parts, and the length $A B$ 15 foot 25 patts, the content will be found to bee about 68 toot 62 parts.

As I unto 2.12: 10 15.25 unto 32.35 :
and fo are 32.35 unto 68.62 .

7 Having the fide of a Jquare e quall to tbe bafe of apy folid given in inch meafure, and ibe lergth of shefolid given in foose meafure, to find the contcuithereof infeet.

As 12 to the fide of the fquare given in inches: So the length in feet to a tourth number; and that fourth to the content in foot meafure:

So in the former folid $A H$, the fide of the equall fquare being 25 inches 45 parts, the content will be found to bee about 68 feet 62 parts.

As 12 unto 25.45 : fo 15.25 uato 32.35 :

 and fo are 32.35 vito 68. 62.8 Having the length, bredih and depth of a quared folid gives in inches, to fird the cointent in inches.

As I unto the bredth in inches: So the depth ininches unto the bare in inches, Then

As I unto the bafe:
So the length in inches unto the folid content ininchesi
So in the folid A, whofe bredth $A C$ is 30 inches, the depth $A E 21$ inches and 6 parts of 10 , and length $A \mathcal{B}_{18} 3_{3}$, the content of the bafe $E C$ will be found 648 inches, and the whole folid content about I 18500 inches.

> As x unto 21 I, $6:$ fo are 30 unto $648:$ As I unto $648:$ fo are 183 to 118584
Gg3 9HaO

- Having the length, bredsh and depth of a PaHA?

 red Jolid given in inches, to finde the content in fecte.Asi to the bredth in inches: So the depth in inches to the bale in inches;

As 1728 to that bafe : So the length in inches to the content in feet.

So in the folid $\mathcal{A} H$, the content will be found to be about 68 feete 62 parts.

As I unto 21. 6: fo 30 unto 648 :
As 1728 unto 648 ; fo 183 to 68.62.
Oras 12 to the bredth in inches:
So the depth in inchesto a fourth number.
As I44 to that fourth number:
So the length ininches to the content in feet.
And fo alfo in the fame folid $\dot{A} H$, the content will bee found to be abour 68 feet 62 parts.

As 12 unto 21.6 : fo 30 unto 54 :
As 144 unto 54 ; fo 183 unto 68.62 .
Io Having the length, bredet and depth of e squared folid given in foot meafure, to firsde the content in feete.

AsI unto the bredth in foote meafure:

So the depth in feetro the bafe infeest.

As I unto that bafe:
So the length in feet the conrent infeet? u ?
And thus inthe formerfolid A H, the bredth A C will be 2 foot 50 parts, the depth $A E$ I foot 80 parts, and the length $A B$ is foot 2.5 parts; then working as before, the content of the bale $A F$ will be found 4 feet 50 parts, and the whole folid content about 68 foot 62 parts, wheh of all others may uery eafily be tried by Arithmetique.

AsI unto 2.50:10 1.80 unto 4.50 . As I unto 4.50 : fo 15.25 . unto 68.625.

II Having the bredth and depth of a fquarod $\int 0$. lid given in inches, and the lengtti in foot merfure, tofind the Gontert thereofing feet.

As I vnto the bredth in inches: So the depth in inches unto a fourth number
which is the content of the bafe in inches.
As 144 hath unto that fourth number's.
So the length in feet to the content infeefo.
And fo in the fame folid $A H$, the content will be found to be about 68 feet 62 parts.

AsI unto 21. 6: fo 30 unto 648 .
As I 44 vnto I 5, 25. fo 648, unto 68. 62\%
Or as I 44 unto the bredth in inches: So the depth in inches unto a fourth number :
which is the content of the bafe in feet.
As x hath unto i hat fourth number:
So the length in feet to the content in feet.
And fo in the fame folid A H , the content will be found to beabout 68 feet 62 parts.

$$
\begin{aligned}
& \text { As } 144 \text { unto } 21.6: \text { fo } 30 \text { unto } 4.50 \text {. } \\
& \text { As } 1 \text { unto } 4.50: 1015.25 \text { unto } 68.62
\end{aligned}
$$

Or as 12 unto the bredth in inches:
So the depth in inches unto a fourth number.

As 12 unto this fourth numbers

 So the length in feet to the content in feet.And fo alfo in the fame folld $A H$, the content will bee found to be abcut 68 feet 62 parts.

> Asi2 unto $21.6:$ fo 30 unto 54%
> As 12 vnito $54:$ fo 15.25 unto 68.63.

All thefe varieries (and fuch like not here mentioned) doe follow upon making of the bafe of the folid, to be $E C$; there would be as many more if any fhall begin with the bafe EH, and folikewife it they make the bafe to be FD.

12 Fiving the ainameter of a Cyliader given in inch mes.ure, to find the length of a foot folldtn inches.

As the diameter in inches unto 46.90: So is I unto a fourth number: and that fcuith to the lengeh in inches.

Sothe diameter of a Cylinder being 15 inches, the ourth number will be about 3.12 , and the length of a foote tolid 9 inches 78 farts.

As 15 unto 46.90 : fo i vito 3.127 : and fo are 3.127 unto 9. 778.

13 Having the diameter of a Cylinder gio ven infoote meafure, to finde the length

$$
\begin{gathered}
\text { of a foote folid in foote } \\
\text { meafure. }
\end{gathered}
$$

As the diameter in feet unto I, 128: So is I unto a fourth number; and thar fourch to the length in foote meafure.

So the diameter being 1 foote 25 parts, the
 length of a foot iolid will be found about 8 . I4 parts of 1000 :

As 1, 25 anto 1. 128 : fo 1.00 to $0.9027^{\text {: }}$ and fo are 9027 unto 8148.

Hh
14. FHa

14 Having the circumference of a Cylinder give in mates, to finder the length of a foot Solid in inch meafore.

As the circumference in inches to 147.36:
So is I to a fourth number ; and thar fourth to the length in inches.

So the circumference being 47 inches 13 parts, the length of a foot fold will be found about 9 inches 78 parts.

As 47. 13 unto 147.36: fo I. 00 to 3.13. and fo are 3 . 13 unto. 78 .

0
0.53

Is Having the circumference of a Cylinder given'is foot measure, to find the length of a foot
fold irs dote measure.

As the circumference in feete to 3.545 :
So is I to a fourth number : and that fourth to the length in foote meafure.

So the circumference being 3 foot 927 parts, the length of a foot fold will be found to be about 815 parts.

As 3.927 unto 3.545 : fo 1. ocounto 0.90 .3 : and fo are 903 unto 815.

> 16 Having the file of a Square equally to the base of A Cylissder, to find the length of a foot solid.

The fide of a square equall to the circle, may bee found by the eighth Prop. of broad meafure, and then this Prop. may be wrought by the frt and abe fecond Prop, of Solid meafure.

17 Hazing the diameter of a Cylinder, and the lengthglvex in inches, to finde the corsserit in inches.
As 1.128 unto the diameter in inches:
So the length in inches to a fourth number; and that fourth oumber to the content in inches.

So the diameter heing 15 inches, and the length 105 ; the content of the Cylinder will bee found to bee about 18560 inches.

As $1 . \overline{1} 284$ unto 5 : fo 2re ros unto 13950 87: and fo are 1395.87 unto 18555.34°

18 Having the diameter and length of a Cylisder in foose meafure, to finde the contest in feete.

As x .128 to the diameter in feet : So the length in feet to a fourth number; and that fourth to the content in feet.

So the diameter being I foote 25 parts, and the length 8 foor and 75 parts, the content of the Cylinder will 1 bee found about io foote 74 parts.

As 1.128 anto 1. $25:$ fo 8.75 unto 9.69: and fo are 9.69 unto 10.737.

I9 Having the diameter of a Cylinder, and the longth given in inches, to find the content in feet.

As 46.90 to the diameter in inct.es:
So the length in inches to a fourth number; and that fourth to the content in feet.

So the diameter being 15 inches, and the length ros; the conrent will be found aboue 10 foote 74 parts.

As 46.906 unto 15 : fo 105 unto 33.58 : and fo are 33.58 unto $10 \cdot 737^{\circ}$

20 Hiwing the diameter of a Cylinder, given in inches and the length in feete, to find the content in feete.

As 3.54 the diam:terin inches: So the length in feece to a fourth number; and that fourth to the content in feete.

So the diameter being 15 inches, and the length 8 foote 75 parts, the content will be found about 10 foot 74 parts.

> As 13.54 unto $15:$ fo 8.75 unto 9.69 : and fo are 9.69 unto 10.74 .

21 Having ibe circumference and length of a Cylinder given in inches to find the content in inches.

As 3.545 to the circumference in inches:
So the length in inches to a fourth number; and that fourth to the content in inches.

So the circumference being 47 inclies 13 parts, and the length 105 inches, the content will bee found about 18560 inches.

$$
\begin{aligned}
& \text { As } 3.545 \text { unto } 47.13 \text { : fo } 105 \text { unio } 1396 \text { : } \\
& \text { and fo are. } 1396 \text { unto } 18555 \text {. }
\end{aligned}
$$

22 Hee

22 Having the circumference and length of a cylinders givers in inches, to find the content in feet.

As 147.36 to the circumference in inches: So the length in inches to a fourth number; and that fourth to the content in feet.

So the circumference being 47 inches 13 parts, and the length 105 aches, the content will bee found about 10 tote 74 parts.

As 147. 36 unto 47.13 : fo 105 unto 33.58 : and fo are 33.58 unto IO. 74 .
23. Having the circumference and length of a Cylinder given in jose measure, to find the content in fete.

As 3.545 to the circumference in feet: So the length in feet to a fourth number; and that fourth to the content in feer.

So the circumference being 3 foots 227 parts, and the length 8 foot 75 parts, the content will be found to be io foot 74: parts,

> As 3.545 unto $3.927:$ fo 8.75 unto 9.69. and fo are 9.69 unto 10.74 :

24 Having the circumference of a cylinder given in inchesuad the length in foot yaingure, if find thicoritent injefte. :
Hh_{3}.
As

As 42. 54. to the circumference in inches : So the length in feet to a fourth nuinber; and that fourih to the concent in feet.

So the circumference being 47 inches 13 parts, and ithe length 8 foore 75 parts, the content will bee found as before, to toot 74 parts.

> As 42.54 unto 47 . $13:$: 8.75 unto $9.69:$ and fo are 9.69 unto 1o. 74 ;

C HAP. IIII.

The ale of the line of λ umbers ingaugeing of veßell.

THe veffels which are here meafured, are fappofed to be Cylinders, or reduced unto cylinders, by taking the mean betweene the diameter at the head and the drameter at the bongue, after the vfuall maner.

1 Hawing the dianseter and the length of a veffell with the content thereof, to finde the gavge point.

Extend the compaffes in the line of Numbers to halfe the diftance berweene the content and the length of the veffell, the fame extent will reach from the diameter to the gauge point.

1 put this propofition firft, becaufe thefe kind of meafures are not alike in all places.

Here ar London it is faid that a wine veffell being 66 inches in lergth, and 38 inches the diameter, would containe 324 gallons. which if it be crue, we may divide the fpace betweene 324 and 66 into two equall parts, and the middle will fall about 146 ,and the fame extent which reacheth from 324 to 146 , will reach from the diameter 38 unto 17. I5 the gauge point for a gallon of wine or oyle afrer London meafirc.

The like reafon holdeth for the like meafure in all other places.

> 2 Having the meane diameter and the lengt 6 of a veffill, to finde the

contert.
Extend the compaffes from the gauge point to the meane diameter, the fame extent being being doubled, hall give the diflance from the length to the content.

So the meane diameter of a wine veffell being 20 inches, and the lengrh 25 inches, the consent will be found to be 34 gallons after London meafure.

For exrend the compaffes from 17.15 , unto 20 , the fame extent will reach from 25 unto 29.1 g , asd from 290 3 unto 34.

In like maner if the meane diamerer were 16 inches, and the length 23 , the content would bee found to bee about 20 gallons.

* For the fame extent which reacheth backe from 7 . Is unto 16 , will reach from 23 to 21.45 , and from 21. 45 unto 20.

So that if the moane diameter thall be 17 inches and 15 centefmes or parts of 100 , the number of inches in the length of the veffell, will give the number of inches in the length of the v ffell, will give the number of gallons contained in the fame veffell: ifthe diameter thall be more or leffe then 170 15, the content in gallons will bee accordingly nore or leffe then the tength in inches.

3 Having the diameter and content, io find

 the length.Extend the compaffes from the diameter to the gange point, the fame extert being doubled hall give the diftance from the content to the lenghth of the veffell.

So the gauge point ftanding as before, if the diameter bee 38 inches, and the content 324 galons wine mealure, the length of the veffels will bee found about 66 inches.

Extend the compaffes to halfe the diftance betweene the length and the conrent, the fame extent thall reach from the gauge point to the diameter.

So the length bing 66 inches, and the content 324 gallons wine meafure, the gauge point ftanding as before, the diameter of the veffell well bee found to be about 38 inches.

CHAP. V.

Containing fuch Aftronomicall propofitions as: are of ordinary u / e in the practife of Narvination.

> 1 To finde the alitude of the Swnme by the fiadowes of agnomon fes perpendicular to

tothe horizon.
As the parts of thie fhadow are to the parts of the gnomon:
So the tangent of 45 gr . to the tangent of the caltitude.
Extend the compaffes in the line of Numbers, from the parts of the fhadow to the parts of the gnomon; the lame extent will give che diftance from the Tangent of 45 gr . to the Tangent of the Sunnes altitude.
So the gnomon being 36 , and the fhadow 27 , the altitude will be found to be 36 gr . 52 m . Or the gnomon being $i 7$, and the fhadow 36 , the altitude will bee found to bee 53 gr . 8 m . Or the fhadow being 20 , and the giomon 9 ,the altitude will be found to be 24 gr . 14 m . as in the eighth P rop. of the ufe of the Tangent line. Pag. 12.
If the gnomon be 22 and the fhadow i is the altitude is 9 gr . 15 m . as I fhewed before Pag, 24 -

2 Having the diftance of the Stisne, from the nexs. equinoctiall point, to find his declination.

As the Radius is in proportion
to the fine of the Sunnes greateft declination:
So the fine of the Suanes diftance from the next equino.tiall point,
to the fine of the declination required.
Extend the compaffes in the line of fines, from 90 gr . to 23 gr .30 m . the fame extent will give the diftance from the Sunnes flace un:o his decination.

So the S unne being tither in 29 gr . of 8 , or I gr . of $\approx \mathrm{m}$, or I gr . of Ω, or 29 gr . of m , that is 59 gr . diffant from the next equinoctiall point, the declination will be found about 20 gr .

If the Sunne be fo neare the equinoctiall point, that his declination fall to be under $1 g r$. it may be found by the line of numbers. As if the sunne were in 2 gr .5 m . of r, that is. 125 m . from the equino $\begin{aligned} & \text { itall point, the former extent of the }\end{aligned}$ compafles from the fine of 90 gr . to the fine of 23 gr .30 m . will reach in the line of numbers. from 125 unto 50 , which dhewes the declination to be about $\mathrm{g}_{\mathrm{ol}} \mathrm{m}$.
> 3. Having the latitude of the place, and the declina-: tuon of the Sun, to find the time of the Sums rifing and fetting.

As the cotangent of the latitude to the tangent of the Suns declination :

So is the Radius

to the fine of the afcentionall difference betweene the houre of 6 and the time of the Suns rifing or fetting.

Extend the compaffes from the tangent of the complement of the latitude, to the tangent of the declination : the fame extent will reach from the fine of 90 degr. to the fine of the afcentionall difference.

Or extend the compaffes from the cotangent of the latitude to the fine of 90 gr . the fame extent will reach from
the tangent of the declination, to the !fine of the afcentianall difference.

So the latitude being 51 gr .30 m . Northward, and the aeclination. 20 gr . the difference of afcention will be tound to be 27 gr . 14 mL . which refolved into houres and mi-: nutes, doth give is houre and almoft 49 m . for the difference betweene the Sunnes nfing or fetting, and the houre of σ, according to the time of the yeare.

> 4 Having the latitude of the place, and the distance of the Sun from the next equinoctiall pornt, to find bis amplitude.

As the cofine of the latiude
to the fine of the Sunnes greateft declination:
So the fine of the place of the Sun,
to the fine of the amplitude.
So the latitude being ${ }_{5}$ I degree 30 minstes, and the place of the Sunne in I degree of $\approx \ldots$, that, is 59 degrees diftant from the next equinoctiall point, the amplitude will bee found about 33 degrees 20 m . For extend the compaffes in the line of fines, from 38 degrees 30 m . the fine of the com: plement of the latitude, unto 23 degrees 30 m . the fine of the Sunnes greateft declination; the fame extent will reach from 59 degrees unto 33 degr. 20 m . Or extend them from 3^{8} degrees 30 min. unto 59 degrees, the fame extent will reach from 23 gr .30 m . unto 33 gr .20 m . as betore.
> s Having the latitude of the place, and the declination of the Sun, to find bis amplitude.

As the cofine of the latitude is to the Radius:
So the fine of the declination, to the fine of the amplitude.

Extend the compaffes from the cofine of the latitude to the fine of 90 gr the fame extent will reach from the fine of the Sumnes declination to the fine of the amplitude.

Or extend them from the tang nt of the latitude to the fine of the declination, the fame extent will reach from the fine of 90 gr . to the fine of the amplitude.

So the latitude being 51 gr .30 m . and the declination 20 gr . the amplitude will be found to bee $33 \mathrm{gr}, 20 \mathrm{~m}$.

> 6 Having the latitude of the place, and the declinations of the Sun, to firade the time when the Sunn corrmeth io be due Eaft or Weft.

As the tangent of the latitude, is to the tangent of the decination:
 So the Radius
 to the cofine of the houre from the meridian:

Extend the compafies from the tangent of the latitude to the tangent of the declination; the fame extent will reach from the fine of $g \circ \mathrm{gr}$. to the fine of the complement of the houre.

Or extend them from the tangent of the latitude'to the fine of 90 gr ; the fame extent will reach from the fangent of the declination to the fine of the complement of the houre.

So the latitude being 51 gr .30 mm . and the declination 20 gr . the Sunne will bee 73 gr . 10 m : that is 4 houres. and 53 m . from the meridian, when he cometh to be in the Eaft or Weft.

7 Having the latitade of the place, and the declimation of the Sunne, to find what altitude the

Sun fhall bave, when be commeth to be due EaST or WTeSt.

> As the fine of the latitude is to the fine of the declination: So the Radius to the fine of the altitude.

Extend the compaffes in the line of Sines from the latitude to the fine of the declination, the fame extent will reach trom the fine of 90 gr . to the fine of the altitude.

Or extend them from the fine of the latitude to the fine of 90 gr ; the fame extent will reach from the fine of the declination to the fine of the altitude.

So the latitude being $5^{1} \mathrm{gr} .306 \mathrm{~m}$. and the declination 20 gr_{r} the altitude will be found about 25 gr .55 m .

8 Having the latisde of the place, and the declinasion of the Susne, to find what altitude the Sunn ball bave at the boure of fix.

As the Radius is in proportion to the fine of the Suns declination: So the fine of the latitude. to thefine of the alitende.

Extend the compaffes in the line of Sines, from 9 g gr . to the declination; the fame extent will reach from the latitude to the altiude.

Or ϵx end them from 90 gr . to the latitude, the fame extent will hold from the decination to the altitude.

So the latitude being 51 gr. 30 m . and the derlination of the Sunne 20 gr . the altitude of che Sunne will be found to be about $1_{5} \mathrm{gr}_{\mathrm{r}} \mathrm{jo}^{\circ}$

- Having the latitude of the place, and the declination of the Sun, to find what Azimuth the Sus ghall have at the boure of fix.

As the cofine of the latitude is to the Radius:
So the cotangent of the Suns declinatiot, to the tangent of the Azimuth from the North part of the meridian.

So the latitude being 51 gr .30 m . and the declination 20 $g r$.the Azimuth will be found to be 77 gr .14 mm . For extend the compaffes in the line of ines, from $38 \mathrm{gr}: 30 \mathrm{ks}$. to 90 gr the fame extent will reach from the tangent of 70 gr to the tangent of 77 gri 14 m .

10 Having the latitude of the place, and the declina tion of the Sun, ard the altitude of the Sun,

10 find the Azinsuth.
Firft confider the declination of the Sunn, whether it be toward the North or the South, fo have you his diftance from your pole: then adde this diftance, the complement of his altitude, and the complement of your latitude, all three together, and from halfe the fumme fubtract the diftance from the pole, and note the difference.

I As the Radius is in proportion to the cofine of the altitude :
So the cofine of the latitude, to a fourth fine.
2 As this fourth fine is to the fine of thephalfe fumme:

So the fine of the difference, to a feventh fine.

Then find a meane proportionall betweene this feventh fine and the Radius, this meane fhall be the fine of the complement of halfe the Azimuth from the North part of the meridian.

Suppofe the declination of the Sun being knowne by the time of the yeare to be 20 degrees Scuthward, the altitude aboue the horizon found by obfervation 12 degrees, and the latitude Northwards 51 degrees 30 m . it were required to find the Azimuth.

The declination is Southward, and therefore the diftance from the pole 110 degrees; then turning the altitude and latitude unto their complements, I adde them all three together, and from halfe the fumme fubtract the diftance fromithe pole, noting the difference after this maner.

Declin. Sourh Altitude Latitude N.	120 gr .0 m	The diftance		m.
	12.0	The complement	78	O.
	5130	The complement	38	30.
The fumme of all three			226	30
The halfe fummeThe difference			113	15
			3	15

This done, I come to the Staffe, and extend the compafles from the fine of 90 gr . to the fine of $7^{8} \mathrm{gr}$. and find he fame extent to reach from the fine of 38 gr .30 m . un$t 037 \mathrm{gr} ; 30 \mathrm{~m}$. Or if I extend them from 90 gr . to 38 gr . 30 m . the lame extent doth reach from 78 gr . unto 37 gr . 30 m . which is the fourth fine reguired.
Then I extend the compaffes ag ine, from this fourth fine of 37 gr .30 mr .unto the fine of the halfe fum.ne 13 gr .15 m . that the fame extent will reach from the fine of the halte fumme 113 gr. i 5 m . unto 4 gr .54 m . which is the feventh fine required.
Laftly, I divide the fpace betweene this feventh fine of 4 gr . 54 mL . and the line of 90 gr . into two equall parts, and I finde the meane proportionall fine to fall on 17 gr . whofe comp! c ment is 73 gr ; the double of 73 gr . is 146 gr . and fuch is the Azimuch reguirsd.
Or having tound the feventh fine to be 4 gr . 54 m . I might looke over againft it, in the line of verfed fines, and there I Thould finde 146 gr . for the azimuth from the North part of the meridian ; and the complement of 146 gr . to a lemicircle being 34 gr . will give the azimuth from the South part of the meridian.

- But if it were required to find the azimuth in the fame latitude of 51 gr .30 . Northward, with the fame altitude of 12 g_{r} and like declination of 20 gr . to the Northward, it would be found to be onely $7_{2} \mathrm{gr} .52 \mathrm{~m}$, though the maner of worke be the fame as before.

Here as the Radius,is to the fine of 78 gr : fo the fine of 38
gr. 30 mL :

Then as this fourth fine of 37 gr .30 m . is to the fine of 93 gr .15 m . fo the fine of 23 gr .15 m . to the fine of 40 gr .20 m. which is the fiven: h fine.

I he halfe way betweene this feventh fine anduthe fine of 90 gr . doth tall at 53 gr .34 m . Whote complement is 36 gr . 26 m . and the double of that is 72 gr .52 m . the Azimuth required.

Or I may find this fame Azimuth in the line of verfed fines, over againft the feventh fine of 40 gr .20 m .

II Having the latitude of the place, the declination of the Sun, ard the alsitude of the Sun, to find the boure of the day.

Adde the complement of the Sunnes alsitude, and the diftarce of the Surne from the fole, and the complement of y cur latitude, all thiee together, and from halfe the fumme fubtract the complenerrt of the altitude, and note the difference.

1 As the Radius is in proportion
to the fine of the Suns diftarice from the pole
So the fine of the complement ot the latitude, to a fourth fine.
2 As this fourth five
is to the fine of the halfe fumme:
So the fine of the difference to a feventh fine.
The meane proportionall betweene this feventh fine and the fine of 90 gr . will be the fine of the complement of halfe the houre from the meridian.

Thus in our latitude of g 1 gr .30 m . the declination of the Sunne being 20 gr . Northwaid, and the altitude 12 gr . I might fid the Sume to be $95 . g r .52 \mathrm{~m}$. from the meridian.
Altitude

$$
\begin{aligned}
& 12^{\prime} \mathrm{gr} .0 \mathrm{~m} \text {. The complement is } 7^{8} \mathrm{gr} .0 \mathrm{~m} . \\
& \text { K k } \\
& \text { De- }
\end{aligned}
$$

74 Theve of the lines and Tangents in Afronomy: Declin. North 20 0 the dift. from the pole 70 o Latitude sy 30 the complement is 3830

| The fumme of all three | $\left.\begin{array}{lll}186 & 30 \\ \text { The halfe fumme } & 93 & 15 \\ \text { The difference } & 25 & : 5\end{array}\right)$ |
| :--- | :--- | :--- |

Here as the Radius, is to the fine of 70 gr .
So the fine of 38 gr .30 m . to the fine of 35 gr .48 m . As this fine of $35 \mathrm{gr} .48 . \mathrm{m}$, is to the fine of 93 gr .15 m 。
So the fine of 15 gr .15 m , to the fine of 26 gr .40 m .
The halfe way becween this feventh fine of 26 gr .40 m , and the fine of 90 gr . doth fall at $42 \mathrm{gr}$.4 m , whofe complement is 47 gr .56 m . and the double of thar, 95 gr .52 m . which conuerted into houres, doth give 6 houres and almoft $24{ }^{\text {ws }}$.from the meridian.

Or 1 might find thefe 95 gr .52 m in the line of verfed fines, wuer againft the feuenth fine of 26 gr .40 m .

12 Hauing the azimath, the Sums altitude, ana the declination, to find the houre of the day.

As the cofine of the declination
is to the fine of the azimuth:
So the cofine of the altitude
to the fine of the houre.
Thus the declination being 20 gr . Southward, the altitude 12 gr and the azinuth found by the renth Prop. 146 gr . I might finde the time to be $35 \mathrm{gr}^{\circ}, 36 \mathrm{~m}$.that is 2 houres 22 m . from the meridian.
13. Having the boure of the day, the Sunnes altitude
and the declination, 10 find the a imuth.

As the cofine of the altitude
is to the fine of the houre:

So the cofine of the de clination,
to the fine of the azimuth.
So the altitude of the Sun being 12 gr . and the declination 20 gr . Southward, and the angle of the houre 35 gr .36 m . I Should find the azimuth to be 34 gr . And fo it is if it be reckoned from the South; but 146 gr . if ic be taken from the North part of the meridian.

> 14 Having the diftance of the Sun from the next equinoctiall point, to find bis right afcenfion.

As the Radius

to the cofine of the greateft declination:
So the tangent of the diftance,
to the tangent of the right afcenfion.
So the Sun being in the firft degree of $2 m$, that is 59 gr. diftant from the next equinoctiall point, and the greatelt declination 23 gr .30 m . the right afcenfion will be found to be 56 gr .46 m . fhort of the beginning of r, and therefore 303 gr .14 m .

> 1s Having the declination of the Sun, to find bis right afiention.

As the tangent of the greateft declination
is to the tangent of the declination giuen:
So the Radius
to the fine of the rightafenfion.
So the greateft declination being 23 gr .30 m . and the declination of the Sungiven 20 gr . the right afcenfion will be found about $56 \mathrm{gr} \cdot \mathrm{j} 0 \mathrm{~m}$.

> 16 Having the longitude and lat itude of a farre To finde the right afienfion of that ftarre

17 To finde the declination of that Starre. Kkz_{2}

The

The ftarres have little or none alteration in their latitade, in therir longitude they moue forward, about I gr .25 pm . in an hundred yeares. Thefe being knownes

> As the Radius
> to the ine of the far res longitude from the next equinoctiall point:
> So the cotangent of the farres latitude to the tangent of a tourch arke.

Compare this fourth arke, with the arke of diftance betweene the poles of the world and of the ecliptique. If the lo gi nde and latucude of the ftarre be both a like; as when the longitdde falleth to bee amonge the Northerne fines $\gamma \triangleleft \approx \sigma \Omega$, and the latude is North from the ecliptique : or the longitude among the Sou herne fignes \approx $m f v \infty x$, and the latitude Southward, then Gall the difference betweene this fourth arke and the diftance of poles, be your fifth arke.

But if the longitude and latitude fhall be unlike, as the longitude in a Northerne figne, and the latitude S outh, or the longitude in a Southerne fine, and the latitude North, then adde this fourth arke to the diftance of both poles, the fume of both fhall be your fith arke. And

As the fine of the fourth arke:
to the fine of the fifth arke,
So the tangent of the ftarres longitude
to the tangent of the farres right afcention, from the next equinoctiall point.

> As the cofine of the fourth arke to the cofine of the fifth arke,
> So the fine of the farres latitude,
> to the fine of the ftarres declination.

Then for proofe of the worke, if there bee no former errour, the proportion will hold.

As the Cofine of the latitude
to the Cofine of the right afcention:
So the Cofine of the declimation
to the Cofine of the longitude.
For example, take the vpper of the two former ftarres in the fquare of the little Beare, which fea-men call the Former Guard. This in the ycare 1625 , will be in 7 degr. 38 m . of Ω. and to his longitude from the beginning of \leadsto 52 degr. 22 m . But his latitude is fill the fame 72 gr .5 Im . Northwards. Wherefore

> As the fine of 90 gr . is to the fine of $\mathrm{s}^{2} \mathrm{gr}: 22 \mathrm{~m}$.
> So the cotangent of 72 gr .51 m .
> to the tangent of 13 gr .44 m .

Which is the fourth arke. Then becaufe the longitude and latitude are both Northward, the difference becweene this fourth arke and 23 gr .31 m . the diftance of both poles will give you 9 gr .47 m . for the fiftharke. And

As the fine of 13 gr .44 m .
to the fine of 9 gr .47 m .
So the tangent of $5^{2} \mathrm{gr} .22 \mathrm{mu}$.
to the tangent of 42 gr .53 m .
Which is the right afcention of this flarre, from the beginning of \approx but 222 gr .53 m , from the beginning of r.

As the cofine of 13 gr .44 mm .
to the cofine of 9 gr .47 m .
So the fine of 72 gr .51 m .
to the fine of 75 gr .46 m .
Which is the declination of this farre from the equator. As the cofine of 72 gr .5 Im 。

Kk 3

So the cofine of $75 \mathrm{gr} \cdot 4^{6 \mathrm{~m}}$.
to the cofine of 52 gr .23 m .
Which agreeing fo well with the longitude of the ftarre propoled is a good proofe, that the right afcenfion and declination were truly found.

Theie are fuch Aftronomicall propofitions as I take to be vfefull for Sea-men. For the firft and fecond will help them to find their latitude; the third to find the Suns rifing and fetting; the 4.5.6.7.8.9.10.1 3 . Prop, to finde the variation of their compafic; the II and I2 Prop. to find the houre of the day; and the reft toward the finding of the houre of the night. For hauing the latitude of she place, with the declination and altitude of any farre, they may find the houre of the ftarre foom the meridian, as in the I Prop.Then comparing the right afcenfion of the flarre with the righ afcenfion of the Sunne, they may haue the houre of the night.

All thefe propofitionsand fuch others may be wrought alfo by the tables of fines and tangents. For where foure numbers do hold in proportion; as the firt to the fecond, fo the third to the fourth; there if we multiply the fecond into the third, and diuide the product by the firft the quotient will giue the fourth required. As in the example of the 15 Prop. where the declination being giuen, it was required to find the right afcenfion. The tangent of 20 gr . the declination giuen is 3639702 , whith being multiplied by the Radius, the product is $36_{397020000000 \text {, and this diuid by }}$ 4348124 the tangent of 23 gr . 30 m . the quotient is 8370741 the fine of 56 gr .50 m . for the right afcenfion required.

Or if any will vfe my tables of artificiall fines and tangents, they may adde the fecond and the third together, and from the fumme fubtract the firft, the remainder will giue the fourth required. And fo my tangent of 20 gr : is 9561.0658 , which being added to the Radius, makes 19561.0658; from this if they fubtract 9638.3019 the tangent of 23 gr .30 m . they
chey fhall find the remainder to be 9922.7639 , which in $m y$ Canon is the fine of 56 gr .49 mm .56 feconds; \& fuch is the right afcenfion required, if it be reckoned from the next equinoctiall point.

The like reafon hodeth for all other Aftronomicall propofitions, as Iwill farther hew by thofe two examples which I gaue before for the finding of the azimuth in the 10 Prop. becaufe they are thought to be harder then the reft, and require threc operations.

Dedin. South 20 gr .0 m . The diftance			$1 \mathrm{logr.om}$	
Altitude	120	the complement	78	\bigcirc
Latitude Nor.	5130	the complement	38	30
	The fumme	of all three	226	30
	The halfe fi	mme	H_{3}	15
	The differe		3.	15

The firft operation will beto finde the fourth fine; and that is done by adding the fine of the complement of the altitude to the fine of the complement of the latitude, and fubtracting the Radius: fo adding: 9990.4044 the fine of 78 gr . vnto 9794.1495 the fine of 38 gr .30 m . the fumme wll be 19784. 5539. And the Radius being funtracted, the remainder 9784.5539 is the fourthfine, and beiongeth to 37 gro 30 m .

The fecond operation will be to find the feuenth fine; and that is done bv adding the fine of the halfe fumme to the fine of the difference, and fubtracting the fourth fine. So the halfe fumme being 113 gr .15 m .1 take his complement to a femicircle, and fo find his fine to be 99.63 .2168 , to which Iadde 8753:5278; the fine of the difference 3 gr . $\mathrm{I}_{5} \mathrm{~m}$; and the fumme is 187167446 . From this I take the fourth fine 9784. 5539 , and the remainder will be 8932 . 1907, which is the feuenth fine., a d belongeth to 4 gr .54 m .

The third operation will be to finde the meane proportionall fine berweene the feuenth fineand the Radius. This in common: tremes , and taking the fquare roote of the product. As in finding a meanc proportionall betweene 4 and 9 , we multiply 4 into 9 , and ihe procuct is 36 , whofe Iquare root is 6 , the meane proportionall betweene 4 and g. But here it is done by adding the fine and the Radius, and raking the halfe of them. So the fumme of the laft feventh fine and the Radius is 18932.1907 aid the halfe of that 9466.0953, which is the meane proportionall fine required, and belongeth to 17 gr . Whole complemenc is 73 gr . and the double of that $14^{6} \mathrm{gr}$. the fame Azimuth as before.

In the fecond example.

The firf operation will be to find the fourth fine; and that is here 9784.5539 , as in the former example.

The fecond operacion will be to find the feventh fines and fo here the fine of the halfe fumme $93 \mathrm{gr} .15 \mathrm{ma}^{3}$ being the fame with the fine of $86 \mathrm{gr}, 45 \mathrm{~m}$. his complement to 180 gr . I find it to be 9999.3009 , to whioh I adde 9596.3153 the the fine of the difference $23 . \mathrm{gr} .15 \mathrm{~m}$. and the fumme is 19595.6163. From this I take the fourth fine 9784.5539 , and the remainder will be 9811.0623 for rthe feventh fine, and belongeth to $40 \mathrm{gr}, 20 \mathrm{~m}$.

The third operation will be to find the meane proportionall fine betweene the feventh fine and the Radius. And fo here the Radius being added to the feventh fine; the fumme will be 19811.0623; and the halfe of that 9905.5311 , doth give the meane proportionallifine belonging to about
gr .34 m . whefe complement is $36 \mathrm{gr} .26 \mathrm{~m} . \&$ the double of that $7_{2} \mathrm{gr} \mathrm{g}_{2} \mathrm{~m}$. he fam: Azimuth as betorc.

I have le downe thele three examples thus particularly, that I might fhew the agreement between the Staffe and the Canon. But otherwile I might deliuer bothethe precept and the worke, for the two att, more compendioully. For generaily in all iphericall triangles, where thiee fides are knowne, and an angle r quircd, make that fide which is oppofite to the angle required, to be the bale; and gather the lumme, the halfe fumme, and the difference as before.

As the rectangle contained vnder the fines of the fides, is to the fquare of the whole fine:
So the rectangle contained vnder the fines of the halfe fumme and the difference, to the fquare of the cofine of halfe the angle.

Then?for the worke, we may for the moft part leaue out the two laft figures; and if they be aboue 50 , put an vnitie to the fixtlplace, after this maner.

The fecond example.

Or for fuch numbers as are to be fubtracted, I may take
LI

82 The voe of the lines of fines and tangents: them'out of the Radius, and writedowne the refidue, and then adde them together with the reft. As in the fame fecond example, the fines of 78 gr . and of 38 gr .30 m . being the numbers to be fubtracted; if I take 9990. 4044 the fine of 78 gr . out of the Radius 10000.0000 , the refidue is 905956 : and fo the refidue of 9794.1495 is 205×8505. Wherefore in head of fubtracting thofe fines, I may adde thefe refidues after this maner :

Hauing thefe meanes to find the Sunnes azimuth, we may. compare it with the magneticall azimuch, and fo finde the variation of the needle.

For let the circle $A M B$; drawne oy the center Z, be a plane.
plane, parallell to the horizon ; \mathcal{A} the point whereon the Sun beart th from vs, M the North point of the magneticall needle, and the angle $A Z M$ the magneticall Azimuth. If we find the Sumes Azimuth as before, to be 72 gr .52 m . from the North to the Weftward, we may allow to many degreesfiom A vito \mathcal{X}, and fo we haue the true North point of the meridian, and confequently the Eaft, Souh, \& Weft points of the hotizon; and the diftance betweene \mathbb{N} and M Shall be the variation of the needle. So that if the magecticall Azimuth $A Z M 1$ hall be $84 g r, 7, m$ and the Suns azimuth $A Z \mathcal{N} 73 \mathrm{gr} . \mathrm{s} 2 \mathrm{~m}$. then mult $\mathcal{N} Z M$ the difference betweene the two meridian, , giue the variation to be II gr. Is m. as Nir. 'Eourough heretofore found it by his obfer uarions at Limbonse in the yeare $15^{8} 0$. Bur if the magneticall Azimuth ZCM fhall be 79 gr .7 m . aid the Suns Azimuth $A Z N 72 \mathrm{gr} .52 \mathrm{~m}$. then fhall the variat on $N Z M$ be only 6 gr .15 m , as I hane fometimes found it of late. Herevpon I enquired atter the place where Mr. Bourough obferued, and went to Limeboufe with fo me of my friends, and tooke with es a quadrant of a foote fimidiameter, and two need. les, the one aboue 6 inches, and the other- so inches long, where 1 made the femidiam ter of my horizontall plane $A Z$ 12 inches: and toward night the 13 of Iune 1622 , I made obferuation in feverall parts of the ground, and found as followeth.

$\mathrm{CHAP}_{\mathrm{H}}$.

C HAP. VI.

Costaining fuch nauticall queftions, as are of ordinary v/e, concerning longitude, latitude, Rumb, and diftance.

1 To kecpe an accoxnit of the fhips way

THe way that the fhip maketh, may be know :e to an old fea-man by experience, by others it may be found for fome fmall portion of rime, either by the logge line, or by the difance of two knowne markes on the fhips fide. The time in which it maketh this way may br meafured by a watch, or by a glaffe, or by the pulle or by repeating a certaine number of words. Then as long as the wind continuethar the fame flay it followerh by proporion,

As the time giuen is to an houre:
So the wav made, toan houres way.
Surpofe the time to be is feconds, which make a quarter of a misute, and the way of the fhip 88 feet : then becaule there are 3600 fecond. in an houre, I may extend the compaffes in the line of $n: m b e r s$, from 15 unto 3000 , and the fame extent will reach from 88 unto 21120 . Or I may extend them from 15 unto 88 , and this extent will reach from 3600 un:o $2: 120$; according tc the ordinary worke in Arithmetigue,

As 15 vito 3600
So 88 vito 21120
which fhewes that an houres way came to 21120 feete.
But this were an vnneceffary bufineffe, to hearken after feet or fadoms. It fufficeth our fea-men to find the way of their hip inn leagues or miles.

And they fay that there are 5 tiectin a pace, 1000 paces in a mil. and 60 m!es in a degrect, and theretore 300000 feete in a degre:. Yet compariag iewerdll ubferua:ious, and their mealures with our feere vfuall about Loindon, I finde that we may allow 352000 tecte to a degree; and then if lextend the compafies in the line ot numbers from 35^{2000} vito 21120 , I thall find the fane extent to reach from 20 leagues the meafure of one degree, $t 01.2$, and from 60 miles to 3.6 ; according to Arcthm rique which thewes the houres way to be league and 2 tenths of aleague, or 3 miles and 6 tenths of a mile.

As 352000 vnto 21120	
So	$20-00$ vnto
and	$1-20$
and	60.00 vnto

But to auoid the fe fractions and other tedicus reduqions, I fuppole ir would be much better to keepe this account of the fhips way (asalfo of the difference of lacitude, and the difference of longicude) by degrees and parts ot degrees a lowing in 100 parts to each degree, which we may cher fore call by the name of centefmes. For fo doing there would be fome agreement betweene the account and the dayes fay ling. Ordinarily the fhip goes a degree in a day, as it may appeare by comparing feverall Iournalls to the eaft and weft Indies. The time of paffage betweere the lizard and the fouth r -moft Cape of Africa is commonly faid to be about three moneihs and the diffance is not much different from 90 degrees.

Againe this account by degrees and Ceprefmes would be more exaq and the addition, fubtraction, multiplication, divifion of them more eafie. Neither would this be hard to conceaue. For,

And fo in the former example of 88 fest in $x 5$ feconds ha= L! 3 fore I hall find the fame extent to reach from roo vato 6 as before, which thewes that the houres way required is 6 cent. fuch as 100 do make a degre, \& 5 do make an ordinary league.

This might allo be done at one operation. For vpon thefe fuppofitions, diuide 44 feet into 45 lengths, and fet as many of them as you may conueniently berwcene two markes on the mips fide, and note che feconds of time in which the fhip goerh thefe lengthes: fo the proportion will hold,

As the ficonds, to the lengths
So I houre, vnto the Centefmes
The lengths diuided by the time, thall giue the cent, which the fhip geeth in an houre.

Suppole the diftance betweene the two markes to be 60 lengths(which are .58 feet and 8 inches) \& let the time be 12 feconds:extend the compaffes from $I 2$ to 1 , in the line of num bers; fo the fame extent will reach from 60 vnto 5 . Or extend them from I 2 vito 60 \& the fame extent will reach from 1 vato 5. This fhewes that the Chips way is according to 5 Cent. in an houre.

This may be found yet more eafily, if the logg line fhal be fited to the time. As if the time be 45 Sconds, the log line may haue a knot at the end of euery 44 feete; then doth the hip run fo many cent.in an houre, as there are knots vered out in the fpace of 45 feconds. If 30 leconds do feeme to be a more conuenient time, the loggline may have a knot at the end of euery 29 feet and 4 inches;and then alfo the centermes will be as many as the knots. Or if the knots be made to any fet number of feet, the time may be fitted vnto the diftance. As if the knots be made at the end of euery 24 fect, the glaffe may be made 24 fecond \& fome what more then an halfe of a fecond, and to thefe knots willifhew the cent. If there be 5 knots vered out in a glaffe, thé 5 cont; if 6 knots, then the hip goeth 6 cent in the fpac: of an houri; \& fo in the reft. For vpon this fuppofition the proportio between the time $\& x$ the teet will be as 45 vnto 44. But according to the common fuppofition it hould feeme to beas 45 vito $37 \frac{1}{2}$, or in liffer termes as 6 vnto 5 . Thofe which are vpon the place, may mike proofe of both, and follow that which agrees beft with their experience.

The vfe of the lines of fines and tangents
2 By the latitude and difference of longitude, to find the diftance upon a courre of EaSt and Weft.
As the fine of $\rho 0 \mathrm{gr}$.
to the cofine of the latitude
So the difference of longitude at the rquator: to the diftance required on the parallell.
Extend the compaffes from the fine of 90 gr . vnto the fine of the complement of the latitude; the fame extent fhall reach in the line of numbers from the difference of longitude to the diffance.

So the meafure of one degree in the xquator, being 100 cent. the diftance belonging to one degree of longitude in the latitude of 5 gr .30 m . will be found about σ_{2} cest. and $\frac{5}{4}$.

Or if the meafure of a degree be 60 miles, the diftance will be found about 37 miles and $\frac{5}{3}$. If the meafure be 20 leagues, then almoft 12 leagues and $\frac{1}{2}$. If the meafure be $17 \frac{1}{2}$, as in

the Spanish charts, them fomewhat leffe then ir leagues fairling upon this paralell, will give an alteration of one degree of longitude.

3 By the latitude and diftance epos a courfe of East or Weft, to find the difference of longitude.

If the diftance be given in leagnes or miles reduce them into centefmes, then will the proportion hold.

As the confine of the latitude to the fine of 90 gr .
So the diftance on the parallell
to the difference of longitude:
Extend the compaffes from the fine of the complement of the latirude, to the fine of 90 gr ; the fame extent will reach in the line of numbers from the diftance to the difference of longitude.

So the diftance ron a courfe of Eat or Weft, in the latirude of $51 \mathrm{gr}, 30 \mathrm{~m}$. being 100 cent . the difference of longtue will be found I .60 , which make one degree and 60 cen tefmes or gr .36 mL .

Or if it be 60 miles, the difference of longitude will be 96 , which alto make I gr .36 m . as before.

4 The longitude and latitude of two places being given, lo find the Rums leading from the one
to the ot her.
As the difference of latitude
to the difference of longitude
So the tangent of 45 gr .
to the tangent of the common Rumbi

Extend the compaties in the line of numbers from the difference of latitudes to the difference of longitudes; the fame extent wili giue thediftance from the tangent of 45 g . vnto the tangent of the Rumb, according to the proiection of the common fea-chatr.

So the latitude of the firft place being so degree the latitude of the fecond 52 degree 30 m . and the difference of longitude 6 gr . the Rumb will be found to be about 67 gr .23 m . which is neare the inclination of the fixth Ruinb to the meridian. But this Rimb fo found, is alwayes greater then it hould be, and therefore to be limited; which may be done fufficiently for the Sca-mans vfe, after this maner:

As the fine of 90 gr .

to the cofine of the midle latitude
So the tangent of the common Ramb to the tangent of the Rumb reguired.
(1 Extend the compaffes either from the fine of 90 degree vnto the fine of the complement of the midle latitude, the fame extent will reach from the tangent of the Rumb before found, to the tangent of the Rumb limited.

Or elfe extend them from the fine of 90 degree vito the tangent of the Rumb before found; the fame extent will reach from the fine of the complement of the middle latitude, vnto the tangent of the Rumb limited.

So the middle latitude beeween 50 gr . and 52 gr .30 m. being 51 gr .15 m . and the Rumb before found 67 gr .23 m. the Rumb limited will be found to be about 56 gr .20 m. which is but fiue minutes more then the inclination of the fift Rumb to the meridian.

If fany pleafe to worke by the Canon he may ioine both thele in one operation.

As the difference of latitude to the diffee ence of longitude
So the cofine of the midelatitude to the tangent of the Rumb required.

2 This Rumb may be found by the helpe of the meridian lime vpon the Staffe. For if I take the difference of latitude out of the meridian lise from 50 degree $\mathbf{v n t o} 52$ degree 30 . m. and mealuse it in his equinoctall, or at the beginning of the meredian line, ' Thall find it there to be equal to 4 degree with may be called the difference of las titude in larged. Wherefore I work as if the difference of latitude were $4 g r$ g.

As the difference of latitude in larged
to the difference of longitude:
So the tangent of 45 gr .
to the tangent of the Rumb required.
And extend the compaffes in the line of sumbers from 4 vnto 6 : fo fhall I finde the fame extent to reach from the tangent of 45 degree vnto the tangent of 56 degree 20 ms , and this is the indination of the Rumb required.

6 By the Rumb and both latitudes, to find mail dracs the ditance upon the Rumbs.

As the cofine of the Rumb from the meridiall
is to the fine of 90 gr .
So the difference between both latitudes
to to the diftance vponthe Rumb
Extend the compaffes from the fine of the complement of the Rumb, vito the fine of 90 gr , the fame extent in the
line of numbers shall reach from the difference of latitude unto the ditiance upon the Rumb.

So the latitude of the first place being 50 gr . the latitude of the fecund 52 gr .30 mm and the Rumb the fit from the ncridian. If I extend the complies from $33 \mathrm{gr}_{0} 45 \mathrm{~m}$. vito the fine of 90 gr . I Shall fid he lame extent in the line of numb-
 the diftance required.
> 7. By the difance and both latitudes $t 0$ find the Numb.?

As the diftance on the Rumb to the difference between both latitudes
So the fine of 90 gr .
to the corine of the Rum from the ineridian.
Extend the compaffes in the line of numbers from the difrance vino the difference of latitudes; the fame extent will reach in the line of fines, from 90 gr unto the complement of the Numb.
2. Sou the one place being in the latitude of 50 degree the other in the latitude of 52 degree 30 m . and the difance between them 4 degres 50 cent. If extend the compafles from 4. 50 vito 2. 50 . in the line of numbers, I hall find the fame extent to reach from the fine if 90 degree vito the complement of 56 degree is m. and fuck is the inclination of the Numb required.

3 By one latitude, Numb, and diftance, 10 find the difirence of latitudes.

As the fine of 90 gr

- to the corine of the Numb from the meridian
Mm_{m}

So the diftance vvon the Rumb to the diff rence between both lattudes.

Extend the compaffes in the line of fines, from $90 \mathrm{gr}^{\text {r. vato }}$ the complement of the Rumb; the fame extent inthe line of numbers, will rcach from the diftance, vnto the difference of letitudes.

So the leffer latitude being so degres and the diftance 4 degres 50 cent. upon the fifth Rumb from the meridian: it I extend the compaffes fiom the fine of 90 gr . to 33 gr .45 m . I hall finde the fame extent to reach from 4.50 in the line of numbers, vnto 2.50 ; and therefore the fecond latitude to be 52 gr .30 mm.
> - By the Rumb and both latitudes, "to find the difference of lowgitudes.

As the tangent of 45 gr .
to the tangent of the Rumb from the Meridian:
So the difference of latitude
to the difference of longitude in the common lea-chart:
Extend the compaffes from the cangent of 45 gr . vnto the tangent of the Rumb; the fame extent will reach in the line of numbers from the difference of latitudes vnto the difference of longitude, according to the proiection of the common fea chart.

So the firt latitude being 50 gr , and the fecond $\mathrm{s}^{2} \mathrm{gr} .30 \mathrm{~m}$. and the Rumb the fifth from the meridian: if I extend the compaffes from the tangent of 45 gr . vito 56 gr .15 m .1 tha!! find the fame extent to reach from 2 . 50 in the line of $n \mathrm{~mm}$ bers to about 3.25 , which make 3 gr .45 m . But this difference of longitude fo tound, is alwayes liffer then it hould be, and therefore to be enlarged, which may be doane fufficiently for the f_{f}-mens $\mathrm{\nabla} \mathrm{f}_{\mathrm{c}_{2}}$ atter this maner :

As the cofine of the middic latitude
to the fine of 90 gr .
So the difference of longitude in the common fea chart to the difference of longitude inlarged.
Extend the compaffes from the fine of the complement of the middle latitude, vito the fine of 90 gr.the fame extent will reach in the line of numbers from the difference of longitude before found, vito the difference of longitude inbrged.
So the middle latitude in this example being st gr. is mo and the difference of longitude before found 3 gr . 75 cent, the differencc of longiude inlarged will be found about 5 g . 99 cens . which are ncare 6 gr .

If any p'tafe to worke by the Canoon he may iozne both the'e in one operation.

As the cofine of the middle latiende
to the rangent of rine Rumbe fron the meridian: So the difference oflatitude
to the difference of 30 gitude required.

- 2 This difference oftongitude may be found by helpe of the merridian Lime vpon the Staffe. For ifI take the proper ditference oflatitude out of the meridian line, and meafure it in his equinoctiall, or at the beginning of the meridian line, 1 hall find the latioude inla ged to be equall to fuare of thofs degrees.

As the tangent of 45 gr .
to the tangent of the Rumb fron che maridian
So'the difference of faritude inlarged
to the difference of longitude required.
Wherefore hauing extended the compalfes as befoit Siona the tangent of 45 gr vnto the tangent of 56 gr . s m Mm 3 the
the fame extent will reach from 400 in the line of numbers, vnto 5.99; which fhewes tl e difference of longitude to be about 5 gr .99 cerst. or about halfe a minute fhort of fix degrees.

10 By the Rumb and both latitudes, to firde the diftance belonging to the chart of Mercators projection.

Take the proper difference of latitudes out of the meridian line of the chart, and mealure it in his eguinoctall, or one of the parallels, and it will there giue the difference of latitudes inlarged.

> As the cofine of the Rumb from the meridian to the fine of 90 gr .
> So the difference between both latitudes to the diftance vfon the Rumb.

Then extend the compaffes from the fine of the complement of the Rumb vito the fine of 90 gr . the fame extent will reach in the line of numbers, from the latitude inlarged, vnto the diftance required. Or extend them from the complement of the Rumb to the latitude inlarged, the fame extent will reach from 90 gr . vnto the diftance.

For example, let the place giuen be A in the latitude of $50 \mathrm{gr} \cdot \mathcal{D}$ in the latitude of $52 \mathrm{gr} .30 \mathrm{~m} . A M$ the difference of latitudes, and the $\operatorname{Rumb} M A D$ the fifth from the meridian. Firft I take out $A M$ the difference of latitudes, and meafure it in $A E$ one of the parallels of the xquinoctiall ; I find it to be very neare 4 gr . this is the difference of latitudes inlarged. I hen ifI extend the compaffes from the fine of 33 gr .45 m . the complement of the fifth Rumb vato the fiue 90 gr. I hall find the fame extent to reach in the line of numbers from 400 vnto 7.20. And this is ihe diftance belonging to the chart. Wherefore I take out thefe $7 \mathrm{gr}_{\mathrm{c}} 20$ cent. out of
the fcale of the parallell $A E$, and pricke, it downe vpon the Rumbtrom A vnto D, where it meeteth with the parallell of the fecond latitude. Laltly, I meafure it in the meridian line, fetting one foore of the compafies as much below the leffer latitude as the other aboue the greater latitude, and find it to be 4 gr .50 cert. which is the fame diftance that I found before in the s. Prop.

11 By the way of the fbip, and two angles of pofition, to find the diftance betweene the fhip and the laxd.

The way of the fhip may be knowne as in the firft Prop: The angles may be obferued either by the Staffe, or by a needle fet on the S taffe. For example, fuppole that being at A,

I. had fight of the land at B, the hip going Eaft Northeaft
from A toward C, and the angle of the thips poftion B $A C$ being 43 gr .20 m : and after that the hip had made to cents. or 2 leagues of way from \mathcal{A} vnten D, I oblerued againe, and tound the fecond angle of the Chips pofition $B \mathcal{D} C$ to be 58 degree or the inward angle $\mathcal{B} A$ to be 112 degree then may I finde the third angle $A B D$ to be 14 degree 40 m . either by fubtration or by complemene vnto 180 gr .
In this and the like cafes, I haue a right line triangle, in which there is one fide and three angles knowne, and it is required to finde the other wo fides and the Caxon for it, is this:

As the fine of the angle oppofite to the knowne fide, is to that knowne fide:
So the fine of the angle oppofite to the fide required, is to the fide required.

Wherefore I extend the compaffes from 14 gr .40 $m 0$ in the fnes, to 10 in the line of numbers, and this extent doth reach from 58 gr . to $33 \frac{1}{2}$, and fuch is the diflance between A and \mathcal{B}, and it reacheth from 43 gr .20 m. vnto 27 in the line of numbers; and fuch is the diftance from D to \boldsymbol{B}.
Thefe two diftances being knowne, I may fet out the land vpon the chart. For hauing fet downe the way of the fhip from A to D by that which 1 hewed before in the vfe ot the meridian liwe, I may by the fame reafon fet off the diftance $\mathcal{A} B$ and $\mathcal{D} \boldsymbol{B}$, which meeting in the point \mathcal{B}, Thall there refemble the land required.

II By knowing the difance between two places an the

 land, and bow they beare one frons the other, and hawing the angles of pofition at the Ship io find the distance betweene the Ship and the land.If it may be conveniently, let the angle of pofition be obferued at fuck tine as the chip comet to be right outer again one of the places. As if the places be Eaft and Weft, leeks to bring one of then South or North tron you, and then oblerue the angle of pofition: fo thill you have a right line triangle, with one fide and three angles, whereby to find the two other fides. First you have the angle of pofition at the Chip; then a sight angie at the pace that is our against you; and the third angle at the other place is the complement to the angre of position: Wherefore

As the fine of the angle portion, is to the diftance bet weens the two places: So the confine of the angle of pofition, to the diftance betweene the flip and the nearer place. And fo is the fine of 90 gr . to the diftance from the hip to the farther place.

So the places being 15 cent. or three leagues one from the other, and the angle of pofition 29 gr , the nearer diftance will be found about 27 cent. and the farther diftance about 31 cent.

Or howfoeuer the angle of pofition were obferued, the diftance between ene th. flip and the land may be found generally as in this example :

Suppose A and D were two head land knowne to be Eat Northeast, and Weft Southwest, 10 cent, or two leagues
one from the other; and that the fhip being at \mathcal{B}, I obferued the angle of the fhips pofition $D B=A$, and found it to be i 4 gr .40 m . and that \mathcal{D} did beare 9 gr .30 m. and $A 24 \mathrm{gr} .10 \mathrm{~m}$. from the meridian B S, this example would be like the former. For if the angle $S B D$ be 9 gr .30 ms . from the Scuth to the Weftward, then fhall NDB be 9 gr .30 m. from the North to the Eaftward. Take thefe $9 \mathrm{gr} \cdot 30 \mathrm{~m}$. out of the angle NDE which is 67 gr .30 m . becaufe the two head landslie Eaft Nor healt, and there will remaine 58 gr . for the angle BDE, and the inward angle BDA fhall be $122 \mathrm{gro}$. . Take thefe two angles $A B D$ and $B D A$ out of 180 gr . and there wil semaine 43 gr .20 ms , for the third angle BAD. Wherefore here alfo are three angles and one fide, by which I may find the two. other fides, as in the laft Prop.

Thefe propofitions thas wrought by the S taffe, are fucls. as I thought to be viffull for fea-men, and choie that are skilfull may apply the example to many others. Thofe that begin, and are willing to practife, may bufie rhemfelaes with this which followeth.

Suppofe foure ports, $\mathrm{L}, \mathrm{N}, \mathrm{O}, \mathrm{P}$; of which L is in the latitude of 50 degrees N is North from L 200 leagues or 1900 centefmes; O Weft from L rooo cestefmes and P Weft from. N 1000 cente/mes fo that L and O will be in the fame latitude of 50 gr . N and P both in the latitude of 60 gr , Then let two fhips depart from L, the one to touch at O, the other at \mathcal{K}, and then both to meet at.P, there to lade, and from thence to returne the neareft. way vnto L. Here many queftions may be propofed.

1. What is the longitude of the port at O ?
2. What is the longitude of P ? And why O and P fhould not be in the fame longitude s.

3 What is the Rumb from O vnto P ?
4. What is the diftance from O unto P ? And why the way fhould be more from I vnte P, going by O, then … N?

5s What

5 What is the Rumb from P vnto I?
6. What is the diftance from P vnto L?

7 What is the Rumb from N vnto O ?
8 What is the diftance from N vnto O ? And why it fhould not be the like Rumb and diftance from \mathbf{N} vnto \mathbf{O}, as from P vnto L ?

Thefe queftions well confidered, and either refolued by the Staffe, or pricked downe on the Chart, and compared with the globe and the common Sea-chart, fhall give fome light to the direction of a courfe, and reduction of places to their due longitude, which are now fouly diftorted in the 'common-Sea-charts.

An Appendix concerning

 The defcription and dofe of an infrument, made in forme of a Crolic-bow, for the mire eafie finding of the latitude at Sia.THe former Prop. fuppofe the latitnde to be knowne I will here fhew how it may be eafily obferued. Vpon the center A and femidiameter $A B$, delcribe an ark of a circle $S B N$. The fame femidianerer will fit of 60 gr . from B unto S for the Sourhend, and other 60 gr . from B vnto Nfor the North end of the Bow: fo the whole Bow will containe 120 gr . the third part of a circle. Let it therefore be diuided into fo many degrees, and each degree fubdiuided into fix farts, that each part may be ten minute ; bur let the numbers fet to it be 5 . 10.15 . vnto 90 gr . and then againe 5. 10, 15 , vnto 25 . that 55 may fall in the middle, as in this figure.

The Bow being thus diuided and numbred, you may fet
the mateths and dayes of each moneth upon the backe; and fuch ftarres as are fit for obferuation vpon the fide of the Bow.

It you defire to make vfe of it in North latitude, you may number 23 gr .30 m . from 90 towards the end of the Bow at N , and there place the renth day of Iune. And 23 gr .30 m 。 from 90 towards S; and there at 66 gr .30 m . place the tenth day of December. And fo the relt ot the dayes of the yeare, according to the declination of the Sunne at the fame dayes.

The ftarres may be placed in like maner according to their declinations.

Arcturus	21 gr .10 m.	
The Buts eye	15	42
The Lions heart	13	45
The Vultures heart 7	58	

The littledog 6 .. 9 from 90 toward the North end of the Bow at N. Then for Southerne ftarres, yous may number their declination from 90 towaid the South end of the Bow at S: As firft the three ftarres in Orions girodle,

In Orions firft at

The Hydra's heart

The virgins \{pike:
The great dog z^{2}
Aguariesleg or 20 a cosuminy an
The Whalestaile 18 an -ininensio
The Scorpions heare 25 : 30
Fomahant $3^{1:} 30$ And f_{0} the South crowne, the triangle, the c'ouds, the crofiers or, what 9 ther farres you think fir for obferuation This I call the fore jode of the Bow.
If you defire to make vfe of it in South latitude, you may turne the Bow, and divide the backe fide of it_{2} and number
it in like maner; and then put on the months and dayes of the yeare, placing the tenth of December at the South end, and the tenth of lune toward the middle of the Bow, and the reft of the dayes according to the Sunnes declination as before.

The chiefeft of the Northerne ftarres may here be placed in like maner according to their declination, Anno 1625.

And fo any orher ftarre, whofe declination is knowne vnto you, which being done. The vle of this Bow may be,

2 The declination being giusen, to finde the day of the moneth.

Thefe two Prop. depend on the making of the Bow. If the day be knowne, looke it oat in the backe of the Bow: fo the declination will appeare in the fide. Or if the declination be knowne, the day of the moneth is fet ouer againft it. As if the day of the moneth were the 14 of Iuly: looke for this day in the backe of the Bow, and you fhall find it ouer againft 20 gr . of North declination. If the declination giuen be 20 gr . to the Southward, you thall find the day to be either the eleuenth of November, or the eleusinth of lanuary-

> 3 To find the altitude of the Surme or fiarres.

Here it is fit to have two running fights, which may be cafily moued on the backe of the Bow. The vpper fight may be fet either to 60 gr . or to 70 gr . or to 80 gr : as you fhall find to be moft conuenient : the other fight may be fet on, to any place betweene the midle and the other end of the Bow. Then with the one hand hold the center of the Bow to your eye., fo as you may fee the Sunne or ftatre by the vpper fight; and with the other hand moue the lower fight vp or downe vntill haue you brought one. of the edges of it to be euen with the horizon (as when you obferue with the Croffeftaffe:) fo the degrees contained betweene that edge and the vpper fight, fhall hew: the altitude required.

Thins:

Thus if ehe vpper fight fhall be at 80 gr . and the lower fight at 50 g . the altitude required is 30 gr .
6. To finciany North latitude, by the meridian altitude of the Sunat a formar obfervation knoin. ing either the day of the moneth, or the declination of the Sunne.

As oft as you are to obferue in North laritude, place both the fights on the fore fide of the Bow, the vpp r fight to the declination of the Sunne, or the day of the moneth at the North end, and the lower fight toward the South end. Then when the Sunne cometh to the mer dian, tarne your face to the South, and with the one hand he Id the center of the Bow to your eye, fo as you may fee the Sunne by the vpper fight; with the other hand moue the lower fight, vatill you haue brought one of the edges of it to be euen with the horizon: fo that edge of the lower fight fhall fhew the latitude of the place in the fore fide of the Bow.

Thus being in North latitude vpon the ninth of October: if I fet the vpper fight to this day, at the fore fide and North end of the Bow, I thall find it to fall to the Sou:hward of 90 vpon 80 gr . and therefore at Iogr .ot South declination. Then the Sunne coming to the meridian, I may fet the center of the Bow to mine eye, as if I went to find the altitude of the Sunne, holding the North end of the Bow vpward, with the vpper fight betweene mine eye and the Sunne, and mouing the lower fighr, vntill it come to be euen w th the horizon. If here the lower fight fhall ftay at $50 \mathrm{~g} r_{\mathrm{a}}$ I may well fay, that the latitude is 90 gr . For the mei idianalti ude of the Sunne is 30 gr . by the third Prof. and the Sunne hauing io gr . of South declination, the meridian altitude of the xquator would be 40 gr ; and therefore the obferuation was made in 30 gr . of North latitude.

By the fame reafon, if the lower fide had ftayed at 51 gr . 30 m , the latitude muft have been 51 gr .30 m , and fo in the reft.

s Tofindany North latitude, by the meridian alditade

 of the starres to the Southward.Let the vpper fight be fet to the flarre, which you intend to obferue, here placed in the fore fide of the Bow. Then hold the North end of the Bow vpward, and turning your face to the South, obferue the meridian altitude as before : fo the lower fight fhall thew the latitude of the place in the fore fide of the Bow.

Thus if in obferuing the meridian altitude of the greac Dog-Itarre, the lower fight fhall ftay at 50 gr , it would llew the latitude to be 50 gr . For this flarre being here placed at 73 gr .48 m . if we take thence 50 gr . his meridian altitude would be 23 gr .48 m . to this if we adde 16 gr .12 m . for the Scurh declination of this ftarre, it would thew the meridian altitude of the equator to be 40 gr . and therefore the latitude to be $50{ }_{o}^{\mathrm{gr}}$.

σ To findany Northlatitude, by the meridian altitade of the farres to the Northward.

If the Bow be intended onely for north latitudeit may fuffice to haue the degrees diuided onely on the forefide, and then the ftarres to the northward may be placed either on the backfide or the infide of the Bow by thefe degrees : the pole flarre at $87 \mathrm{gr}, 20 \mathrm{~m}$. neere the 20 day of September, the formolt gnard at 75 gr .45 m . the hindmoft guard at 73 gr .25 m . and the reft according to their declinations before mentioned fo the 90 degree fhall reprefent the north pole of the world.

Whenany of thefe ftarres come to be in the meridian and vnder the pole fet the vpper fight to that ftarre, hold the north end of the Bow vpward and turning your face to the north obferue his altitude as before fo the degrees contained between the 90 degree and the lower fight fhall fhew the altitude of the pole.

Thus the former guard coming to be in the meridian vnder 00
the

The vfe of tbe Bew.

the pole if you obferue and find the lower fight to ftay at 40 $g r$. the eleuation of the pole is 50 gr . according to the diftance betweene 4° and 90 .

If you would obferue any of thefe ftarres at fuch time as they come to be in the meridian and aboue the pole, you may place thefe ftarres in the Bow aboue 90 gr . the north flarre at 2 gr .40 m . neere the fourth day of september the formoft guard at 14 gr .15 m . the hindmoft guard at 16 gr .35 m . and fuch others as you thinke fitteft according 10 their diftance from the pole : then fetting the vpper fight to the place of the ftarre aboue the pole, the reft of the obferuation will be the fame as before.

Eut if the Bow be made to ferue at large both in South and north latitude then thefe northerne farres would be let placed on the backfide of the Bow by the degrees on that fide according to the complement of their declinations, that the north ftarres may anfwer to the north fun in fouth latitude in fuch fort as the foutherne ftarres did to the fouth fun in north latitude in the former Prop. This being done let the vpper fight be fet to the ftare which you intend to obferue, here placed on the backe fide of the Bow. Then hold the North end of the Bow vpward. and turning your face to the North, obferue the altitude of the farre when he cometh to be in the meridian and vnder the pole: fo the lower fight fhall fhew the altitude of the pole in the back fide of the Bow.

Thus the former guard coming to be in the meridian vnder the pole, ifyou obferue and find the lower fight to ftay at 50 gr . fuch is the cleuation of the pole, and the latitude of the place to the Northward. For the diftance betweene the two fights will Thew the altitude to be $35 \mathrm{gr} .4 \mathrm{~s} \mathrm{~m} . \&$-the ftar is 14 gr .15 m . diftant from the North pole. Thefe two do make vp 50 gr . for the eleuation of the North pole, and therefore fuch is the North latitude.

10 Io find any South latitude, by the meridian altitude of the fun at a forward obferuation, knowing either the day of the moneth, or the declination

of the Sunne.
When you are come into South latitude, turne both your fights to the backfide of the Bow: the vpper fight to the declination of the Sun, or the day of the moneth at the South end, and the lower light toward the North end of the Bow. Then the Sun coming to the meridian, turne your face to the north, and holding the South end of the Bow vpward, obferue the meridian altitude as before: fo the lower fight fhall fhew the latitude of the place in the backe fide of the Bow.

Thus being in South latitude, vpon the tenth of May if you obferue and find the lower fight to ftay at 30 gr . on the back fide of the Bow, fuch is the latitude. For the declination is 20 gr . northward, the altitude of the Sunne betweene the two fights 40 gr . the altitude of the equator 60 gr . and therefore the latitude 30 gr .

11 To find any Southlatitude, by the meridian altitude of the Starres to the Northward.

Let the vpper fight be fet to the farre which you intend to obferue, here piaced on the backe fide of the Bow. Then hold the South end of the Bow vpward, and curning your face to the north, obferue the meridian altitude as before: fo the lower fight fhall hew the latitude of the place in the back fide of the Bow.

Thus being in Southlatitude, and the former guard com^{-} ming to be in the meridian ouer the pole. If you obferue and finde the lower fight to flay at 5 gr . fuch is the latitude. For this ftarre is 14 gr .15 m . from the north pole, the alcitude of the farre betweene the two fights 9 gr . is mm . the north pole depreffed 5 gr . and therefore the latitude 5 gr . to the Southward.

9. To obferwe the altitucle of the Sunne by the Bow or with an AStrolabe.

Here it is fit to haue a third fight (iike to the horizontall fight belonging to the ftaffe) which may be fet to the center of the Bow.

If the fun be neere to the zenith, hold the Bow as when you oblerue with the eAstrolabe, fo as the center being duwnward the line $A B$ may be verticall and the line $S N$ parallel to the horizon, then turning one end of the Bow toward the fun you may mouc one of the fights on the back ofthe Bow, vntill the fhadow thereof fall on the middle of the horizontall fight fo the degrees contained betweene the verticall line $A \mathrm{~B}$ and that vpp-r fight thall fhew the diftance of the Sunne from the zenith.

If the funne be neerer to the horizon, you may hold the Bow fo as the line $S \mathcal{N}$ may be verticall and the line \mathcal{A} B parallell to the horizon, then obleruing as before the degrees contained between the line $A \mathrm{~B}$ and the vpper fight fhall fhew the altitude of the funaboue the horizon.
> 10. To find a fouth latitude by the meridian altituce of the flarres to the Southward.

Letshe vpper fight be fet to the ftarre which you intend to obfertse which might be here placed on the fore fide of the Bow by the complement of their declinations if we knew the true place ot fuch as neere to the fouth pole.

Then hold the fouth end of the Bow vpward and turning your face to che fouth, obferue the altitude when he cometh to be in the meridian and vnder the pole fo the lower
lower fight fiall hew the alcitude of the sole in the fore fide of the Bow.

II To obferue the altitude of the Surne backioard.

Set the vpper fight either to 60 , or 70, or 80 gr . as you thall find it to be moft conuenient, the lo wer fight on any place betweene the middle and the other end of the Bow, and haue an horizontall fighe to be fer to the center. Then may you turne your backe to the Sunne, and the back of the Bow toward your felfe, looking by the lower fight through the horizontall fight, and mouing the lower fight vp \& downe, vitill the vpper fight doe calta hadow vpon the middle of the horizonall fight : fo the degrees contained betwene the two fighes on the Bow, mall giue the alritude requi1 d.
Thus if the vpper fight fhall beat 80 gr . and the lower fight at 50 gr . the alcitude riguired is 30 gr . as in the third Prop.

Or if you tourne the other end of the bowe vpwardand fet the vpper fight to the begmung of the quadrant and then obicrue as before, the lower fight will fhew the altirude.

> 12 To find any North iatitude by the meridian alti: tude of ihe fun at a baike offeruation, kno. wing either the day of the moneth, or the declination of the.

> Surne.

Place your three fights as before on the fore fide of the Bow: the vpper fight to the declination of the $S u n$, or to day of the moneth, at the North end ; the lower fight toward the South end of the Bow; and the horizontall fight
to the center. Then the Sunne coming to the meridian, turne your face to the North, \& holding the North end of the Bow vpward, the South end downeward, with the back of it toward your felfe, obferue the fhadow of the vpper fight as in the former part of the, 5 Prop. fo the lower fight fhall fhew the latitude of the place in the fore fide of the Bow.

Thus being in North latitude vpon the ninth of Octcber, if you obferue and find the lower fight to ftay at $50 . \mathrm{gr}$. on the fore fide of the Bow, fuch is the latitude. For the declination is. 10 gr . Southward, and the altitude of the Sunne betweene the two fights 30 gr . the altitude of the equator 40 gr . and therefore the latitude 50 gr . as in the fixth Prop.

> 13 To find ary South latitude by the meridian altitude of the fun at a back obferuation, knowing either the day of the moneth, or the de-
> clination of the
> Sunse.

When you obferue in South latitude, place ycur three fights on the backe fide of the Bow : the vpper fight to the declination of the Sumne, or the day of the moneth at the South end ; the lower fight roward the North end of the Bow, and the horizontall fight to the center. Then the Sun coming to the meridian, turne your face to the South, and holding the South end of the Bow vpward, with the backe of it toward your felfe,obferue the fhadow of the vpper fight as before: fo the lower fight thall fhew the latitude of the place in the back fide of the Bow.

Thus being in the South latitude vpon the tenth of May, if you obferue and find the lower fight to fay at 30 gr .on the backe of the Bow, fuch is the latitude of the Sunne betweene
the two lights 40 gr . the altitude of the cquator 60 gr and therefore the latitude 30 gr , as in the feuenth Prop.
> 14. To find the day of the moneth, by krowing the latitude of the place, andobferiuing the meridian altitude of the Surne.

Place your thiree fights according to your latitude; the hosizontall fight to the center, the lower fight to the latitude, and the vpper fight among the moneths. Then when the Sunne cometh to the meridian, obferue the altitude, looking by the lower fight through the horizontall, and keeping the lower fight ftill at the latitude, but moung the ypper fight vncil it giue fhadow vpon the middle of the horizontal fight: fo the vpper fight fhall fhew the day of the noneth requir.d.

Thus in nur latitude if you fet the lower fight to 5 Igr. 30 m and obferuing finde the altitude of the Sune betweene that and the vpper fight to be 28 gr .30 m . this vpper fight will fall upon the ninth of Otober, and the twelfth of Fe bruarie. And if yet you doubt which of them two is the day, you may expect another metidian altitude; and then if you find the vpper fight vpon the tench of Oabor, and the eleuenth of Februarie, the queftion will be foone refolued.

1s To find the declination of any vrknowne starifer and fo to place it on the Bow, kneming the latitude of the place, and obferuing the Meridian ältitude of the Starre.

When you find a farre in the Meridian that is fit for obferuation. Set the center of the Bow to your eye, the lower fight
fight to the latitude, and moue the vpper fight vp or downe vntill you fee the horizon by the lower fight, and the farre by the vpper fight, then will the vpper fight fay ar the de. clination and place of the ftarre.

Thus being in 20 gr . of North latitude, if you obferue and find the meridian altitude of the head of the Crofier to be 14 gr .50 m . The vpper fight will ftay ar 34 gr . 50 m . and there may you place this flarre. For by this obferuation the diftance of this ftarre from the South pole fhould be 34 gr . 50 m . and the declination from the equator 55 g . 10 mm . And fo for the reft:

The flarres which I mentioned before, do come to the medridian in this order, after the firlt point of Aries.

16 To find any north latitude on lardby obferwation with ibread and p!aminet.

Set the fight to the day of the moneth at the fore fide and fouth end of the Bow: then when the fin cometh to the meridian turning the north end ia your left hand toward the fouth, fo as the fight at the center may fhadow the fight at the day, obferue where the thread falleth and abate 20 gr . If it fall on 70 gr . the latitude is sogr. If on $71 \mathrm{gr} \cdot \mathbf{3 0} \mathrm{ms}$. in the latitude is 51 gr .30 in . And to in the reft

If the Bow had ben made onely for finding the latitude on land I might then haue fet fuch numbers to it as needed no allowance.

> 17 To find any fouth latitude on land by obferwation with thread aná plumsmett.

Set the fight to the day of the moneth at the back fide and north end of the Bow, and when the fun cometh to the meridianturning the fouthen di your left hand toward the north obferue as before, and abate zo degrees.

1. Or you may let the fight to the day of the moneth at the fore fide and north end of the Bow, and fo obferuing as before, the thrcad will fall on the complement of the latitude.

	\% $\%$, Mi,		H0. $31 \mathrm{~S}_{\text {, }}$
The pole flarre at	- 29	The lionshart	9. 48
The rams head	46	The gieat bearesbacke	10
The head of Medura	44	Firft in gr beares taile	12 ET
The fide of Perfeus	58	The Virgins fipe	13 5
The Bulseyc.	15	Second in gr.beares taile	13
The goate	49	Third iu grobearestalc	1333
Orions lef houldes	5 s	Arturus	13 58
Orions ${ }^{\text {the firft }}$	13	The formof guard	1432
Orions the iecond	17	The North crowne	1519
grale the third.	$5 \quad 21$	The hindmoft guard	1529
Orions right fhoulder	35	Scorpions hart	467
Thegreat dog	39	Theharpe	188
Cafor	10	Vulturs hart	19. 33
Thelittle dog	: 0	Swans taile	$20 \quad 39$
Pollux	22	Fomahant	2236
The Hydra'shars	, 9		

The end of the fecond booke of the croftaffe.

THE THIRD BOOKE.

 of the vfe of the lines of Numbers,
Sines and Tangents for the draving of Houre-lines on alljorts of Planes.

THERE are ten feuerall forts of Planes, which take their denomination from thofe great circles to which they are parallels, and may fufficiently for our vfe be reprefented in this one fundamentall Diagram and be knowne by their horizontall and perpendicular lines, of fuch as know the latitude of the place, and the circles of the iphare.

1 An horizontall plane parallell to the horizon, here reprefented by the outward circle ESW N.
2. A verticall p'ane parallell to the prime verticall circle which puffeth through he zenith ard the points of Eait and Weft in the hor zon, and is right to the horizon and the meridian; that is, maketh right angles with them both. This is reprefented by $E Z W$.

3 A polar plane parallell to the circle of the houre of σ_{0} which paffeth through the pole and the points of Eaft and Weft, being right to the Equinoctiall and the Meridian, but inclining to the horizon, with an angle equall to the latitude. This is here reprelented by $E P W$.

4 Anxquinoctiall plane parallell to the Equinoctiall, which pafleth through the points of Ealt and Weft, being right to the Meridian, but inclining to the Horizon, with an angle equall to the complement of the latitude. This is here reprefented by E A W.

5 A verticall plane inclining to the horizon, parallell to any great circle, which pafeth through the points of Eaft and Weft, being right to the meridian, but inclining to thê horizon, and yet not paffing through the pole, nor parallell

to the xquinoctiall. T his is here reprefented cither by $E I W$, or $E Y W$, or $E L W$.
σ A meridian plane parallell to the meridian, the circle of the houre of 12 , which pafferh through the zenith, the pole, and the points of South and Norih, being right to the horizon, and rhe prime verticall. This is here repreiented by $S Z \cdot 2$.

7 A meridian plane inclining to the horizon, parallell to any great circle, which paffeth through the points of South and North, being fight to the prime verticall, but inclining
clining to to the horizon. Tibis is here reprefented by $S G \mathcal{X}$.

8 A verticall declining plane, parallell to any great circle, which paffech through the zenith, being right to the horizon, butinclining to the meridian. This is reprefented by $B Z D$.

9 A polar declining plane, parailell to any great circle, which paffert through the pole, being right to the equino: ctiall, tur inclining to the meridiano. This is here reprefented by $H P 2$.

10 A declining inclining plane, parallell to any great circle, which is right to none of the former circles, but declining from the prime verticall, and inclining both to the horizo: and the meridran, and all the hoare circles. This may be here reprefented either by $E: M D$, or $B F \mathcal{D}$; or $\mathcal{B K D}$, or any luch great circle, which paffeth neither through the South and North, nor Eaft and Weft poines, nor through the zenith nor the pole.

Each of thefe planes (except the horizoutall) hath two faces whereon houre-linesmay bedrawne; and fo there are I_{9} planer in all. The neridian plane hath one face to the Eaft, and another to the Weft: the other verticall planes baue oue to the South, and another to the North, and the rff one to the zenith, and another to the nadir: but what is faid of the ene, may be vnderftood of the other.

To defcribe the fundamentall Diagram.

The defcription of this diagram is fet downe at large in the vfe of the Seltor Pag. 65. but for this purpofe it may fuffice if it haue the veriicall circle, the houre circies, the equator and the tropiques firft drawne in it, other circles may be fupplyed afterward as we fhall haue vfe of them. And thofe may be readily drawne in this maner.

Let the outward circle reprefenting the horizon be drawne Pp 3
and diuided into foure equall parts with $S N$ the meridian \& $E W$ the verticall and each fourth part into 90 gr . That done lay a ruler to the poynt S, and each degree in the quadrant $E \geqslant$ and note the interfections where the ruler croffeth the verticall, fo fhall the femidiameter $E C$ be diuided into other 90 gr . and from thence the other femidiameters may be diuided in the fame fort. Thefe may be numbered with $\mathbf{t} .20$ 30.8 c . from E toward C, and for varietie with 10.20 .30. $\& c$.from C toward W. But for the meridian the South part would be beft numbered according to the decination from the equator and the North part according to the diftance from the pole.

Then with refpect vnto the latitude which here we fuppofe to be 51 gr .30 m . Open the compaffes vnto 38 gr .30 m . from C toward W, and prick them downe in the meridian from C vnto P fo this point P fhall reprefent the pole of the world, and through it mult be drawne all the houre circles.

Hauing three points E, P, W, finde their center which will fall in the meridian a little without the point S, and draw them into a circle $E P W$, which will be the circle of the houre of 6 .

Through this center of the houre of 6 , draw an occult line a length parallell to $E W$, fo shis line fhall containe the centers of all the other houre circles. Where the circle of the houre of 6 croffeth this occult line, there will be the centers of the houre circles of 9 and 3 . The diffance between thefe centers of 9 and 3 , will be equall to the femidiameters of the houre circles of 10 and 2 . And where thefet two circles of 10 and 2 Thall croffe this occulc line there will be the centers for the houre circles of II \& 7 \& 5 and I. Againe diuide the diftance between the centers of 10 and 2 , into three equall parts, fo the feet of the compaffes will reft in two points: the one is the center of the houre circle of8, and the other the center of the houre circle of $4 . \&$ the extent of the compaffes to one of thefe third parts ghall be the true femidiameter of thefe circles if there be no error commitred in the finding of the other centers.

The houre circles being thus drawne, take 51 gr .30 m .from Ctoward W and prick them downe in the South part of the meridian from C vnto A, a d d bring the third point E, A, W, into a circle this circle to drawne that! reprefent the equator.

The tropique of 5 is 23 gr .30 m . aboue the equator, and 66 gr .30 m ditant from :he pole, and fo in this iaticude it will croffe the South part of the meridian at 28 gr . From the z enith, and the North part of the meridian at $\pi_{5} \mathrm{gr}$. below the honzon Take therfore 28 gr . fro C toward W \& princti them downe in the meridian from C vnto L, fo haue you the, South intelfection. Thenlay the rular to the point $E \& 15 \mathrm{gr}$. in the guadrant $N E$ numbered trom Nroward E, and nore where is croffeth the meridian, fo fhall you haue the North interfeEtion. The halfe way between thefe two interfections will falloin the meridian at thepoint a a aa, \& the circ'e drawne on the center a_{2} and femidiameter a L, fhall reprefent the tropique of 5 , and here croffe the horizon before 4 in the morning \& afer 8 in the euening, about 40 gr . nortwhard from E and W. according to the rifing and ferting of the fun at his entrance into. 5 .

The tropique of $2 s$. is 23 gr .30 m . below the equator, 8 c 113 gr .3 .0 m . diftant from the north pole, fo that in this latitude it crofferh the South part of the meridian at .75 gr . from the zenith, and the north part of the meridian at 62 gr . below the horizon. Take therfore 75 gr . from C toward W, and pricke them downe in the meridian from C vno r fo have you the South interfection, then lay the ruler to the point E \& 62 gr :in the quadrant $\mathcal{N} E$-numbered from N toward E and note where it croffeth the meridian, fo fhail you haue the Northniter fection. The halfe way between thefe two interfections fhall be the center whereon you may detcribe the tropique of ψ. and this tropique will croffe the horizon after 8 in the morning and before 4 in the cuening, about 40 gr . fouthward from E and W, according to the rifing and fetting. of the fun at his entrance into

To find tbe inclinatios of any Plase.

For theidiftinguifhing of thefe Planes we may finde whethe they be horizontall, or verticall, or inclining to the horizon, and how much they incline, either by the vfuall inclinatorie quadrant, or by fitting a thread and plummet vnto the Sector.

For left the Sector be opened to a right angle, the lines of Sines to an angle of $22 . g r$. the inward edges of the Sector to 90 gr . and let a thread and plummet be hanged vpon a line

parallell to the edges of one of the legs, fo that leg thall be verticall, and the other leg parallell to the horizon.

If the plane fecme to Ee verticall (like the wall of an vpright building) y cumay trie it by holding the Sector, fo that the itread may fall vfon his plumet line. For then if the verticall cdec of the Sactor hall lie clofe to the plane, the plane is crect, ond therefure fard to be verticall; and if ycudraw a line by that edge of the Se Elor, it Shail be a verticail line.

If the plane feeme to be letell with the horizon, you may riet it by fering the lor zontall leg of the Stctor to the plane, and holding the uther leg vpright: for thenifthe thread hall fall conhispluminer line, which way focuer yous turne the Sector, it is an horizontall plane.
It the ore end of the plane be higher then the o her, and yet not verticall, it is an inclinitg plane, and you may find the inclination in this manner.

Firft hold the verticall leg of the Sector vpright, and turue the horizontall $k g$ about, watill it lie clote, whit the plane, a: d the thread fall on bis plummer lite fo the line drawne by the edge of that herizontall leg , 1 l all be an horizontall line.

Suppofe the plane to te $B G E D_{i}^{\prime}$ and tliat $B D$ were thus found to be the horizontall line vpon the plane then may you croffe the horizontalline at right angits with a perpendicular $C F$: that done, if you fet one of the legs of the SeCtor vpon the perpencicuar line $C F$, and make the cher is g with a thread and p'ummet to tecome verticall, you fhall haue the angle betweene the verticall line and the perpendicular ou the Plane, as before in the vfe of the Sector, pag. 50 , and the complement of this angle is the inclination of the planc to the horizon.

To find the declination of a Plane.

The declination of a Plane is alwayes reckoned in the horizon betwene the line of Eaft and Weft, and the herizontall line vpon the plane. As in the fundamentall Diagram, the prime verticall line (which is the line of Eaft and Weft)
is $E C W$; if the horizontall line of the plane propofed thal be $B C D$. the angle of declination is $E C$.

But becaufe a Plane may decline diuers wayes, that we may the better diftinguifh them, we confider three lines belonging to euery Plane: the firf is the horizontall line; the fecond the perpendicular line, croffing the horizontall at right angles; the third the axis of the plane, croffing both the horizontall line, and his perpendicular, and the plane it felfe at right angles.

The perpendicular line doth help to find the inclination of the plane as before, the horizontall to finde the declination, the axis to giue denomination vnto the piane.
For example, in a verticall plane in the fundamentall diagram reprefented by $E Z W$, the horizontall line is $E C W$, the lame with the line of Eaft \& Welt, \& therefore no declination; the perpendicuiar croffing it is $C Z$, the fame with the verticall lins, drawne from the center to the zenith, right vnto the horizon, and therefore no inclination. The axis of the plane is $S C \mathrm{~N}$, the fame with the meridian line, drawne from the South to the North, and accordingly giues the denomination to the plane. For the plane hauing two faces, and the axis two poles, S and N; the pole S falling directly into the South, doth caufe that face to which it is next to be called the South face; and the other pole at N , poincing into the North, doth giue the denomination to the other face, and make it to be called the Noth face of this plane.
In like manner in the declining inclining plane in the fundamentall diagram reprefented by B F D,the horizontall line is $B C D$, which croffeth the p ime vertica! line $E C W$, \& therfore it is called a declining pane, according to the angle of declination $\varepsilon C B$ or $W C \mathcal{D}$. The perpendicular to this horizontall line is $C F$, where the point F falleth in the plane $2 \mathrm{Z} . \mathrm{H}$ perpendicular to the plane propofed, betweene the zenith and the North part of the horizon, and therefore it is called a plane inclining to the Northward, accordr g o the arke $F 2$, or the angle $F C Q$. Theaxis of the plate is here reprefented by the line $\mathrm{C} K$, where the pole K is $9^{\circ} \mathrm{gr}$. diftant
from the plane, and fo is 28 much aboue the horizon at $\mathrm{H}^{\prime \prime}$ and the other pole as much below the horizon ar Q, as the plane at F is diltant from the zenith : and this pole K here falling betweene the meridian and the prime verticall circle inco the Southweft part of the world, this vpper face of the plane is chercfore called the Southweft face, and the lower the Nor theaft face of the plane.

The declination from the prime verticall may be found by the needie in the vfuall inclinatorie Quadrant, or rather by comparing the horizontall line drawne vpon the plane with the azimuth of the Sunne and the meridian line, in fuch fort as before we found the variation of the magneticall needle. For take any boord that hath one fide ftraight, and draw as in the lait diagram the line HO parallel to that fide,\& the line $Z \quad M \mathrm{p}$ erpendicular vntoit, and on the center Z make a femicircle H M O:this done, hold the boord to the plane, fo as $H O$ may be parallel to $B D$ the horizontalline on the plane \& che boord parallel to the horizon;then the Sun hining ypon it, hold out a thread and plummer, fo as the thread being veiticall, the fhadow of the Sunne may fall on the center Z, and draw the line of Ghadow $A Z$ reprefenting the common fetion, which the Azimuth of the Sunne makes with the plane of the horizon, and let another take the altitude of the Sunne at the fame inftant: fo by refoluing a criangle, 28 I Thewed before pag. 65 you may find what Azimuth the Sua was in when he gane fhadow vpon $A Z$.

Suppofe the azimuth to be (as before pag. 64.)72 gr. 52 m . from the North to the Weftward, and therefore 17 gr .8 m . from the W.ft, we mayallow thede $17 \mathrm{gr}, 8 \mathrm{~m}$. from e 2 vnto V, and draw the line $Z V$, and fo we haue the true W eft point of the prime verticall line: then allowing 90 gr . from $V \mathrm{vn}$ to S, we haue the South point of the meridian line $Z S$; and the angle $\mathrm{HZ} V$ fhall giue the dclination of the plane from the verticall, and the angle O Z Sthe declination of the plane from the meridian.

Or we may take out onely the angle A \& H, which the line of fhadow makes with the horizantall line of the plane,

124
To find a declination of a Plase.
and compare it with the angle $A Z V$, which the line of thadow makes with the prime verticall. And fo here if $A \mathrm{ZV}$ the Sunnes Azimuth hhall be 17 gr .8 m . paft the Weft, and yer the line of fhadoiv $A Z 7 \mathrm{gr} .12 \mathrm{~m}$. Thort of the plane, the declination of the plaze fhall be 34 gr .20 m as may appeare by the fite of the plane and the circies.

If the altit:ade of the Sune be taken at fuch time as the Thadow of the thrcad falleth on B D or HO, and then a triangle refolued, the declination of the plane will be fuch as the Azimuth of the Sunne from the prime verticall.

If at fuch a time as the fhadow falleth on $M Z$, the declination will be fuch as the Azimuth of the Sunae from the meridian.

If it bea faire Summers day you may firft finde what altitude the sumue will haue when he cometh to be due Eaft or Weft, and then expect vatill he co ne to that altitud; fo the declination of the plane fhall be fuch as the angle contained betweene theline HO and the line of the Ch dow.

Hauing diftinguifhed che Planes, the next care will be for the placing of the fyle and the drawing of the hourelines.

The fyle will be as the axis of the world, fometimes parallel to the plane, lometimes perpendic.1ar, fonetines cut: the plane with oblique angles.

The houre- lines will be either parallell one to the other, or meete in a center with equall angles, or meere with unequall angles. If the ftyle be perpendicular to the plane, the angles at the center will be equall ; and this falls our ou ly in the Sou h and North face of an equino. Etall pla $1 e$: if the atyle be paraltel to the plaie, the houre-lines will be alfo parallell oue to ano her; and this falls out in all polar planes, as ia the Eait and Neft merid an planes parallel to the circle of the houre of 12 , in the vpper and lower dire t polars $p 3-$ rall.ill to the circles of the houe of 6 , and in the vpper and lower declining polars which are parallel to any of the other houre circles.

To find the declinat ion of a Plane.

But in the horizonall and all other plazes, the ftyle will cut the plane with an acute angle, and the houre lines will meet at the root of the Ityle, and there make vnequall angles.

CHAP. I.

To draw the boure-lines in an equinoctiall Plane.

AN equinoctiall plaue is that which is parallell to the e quinoctiall circle here reprefented by $\varepsilon A V$, whereia the

fpaces betweere thi houre circles being equall, there is no need of furthet piecept, but onely to draw a circle and to diuide it into 24 equall parts for the 24 houres, and fubdiuide each houre into halues and quarters, and then to fet vp the ftyle perperdicular to the plane in the center of the circle. The help which thefe lines ot proportion doe here affoord vs; is onely in the diuifion of the circle, which may be done readily by that which I Thewed before, Pag. 29.

For example, fuppofe the femidiameter of the equinoctiall circle to be fix inches, and that it were reguired to know the diftance of the houre-points each from other: here each houre being 15 gr . diftant from other, I extend the compafo fes from the fine of 30 gr . vato the fine of 7 gr .30 m . the halfe of 15 gr . and I find the fame extent to reach in the line of numbers from 6.00 vnto 1.56 .

Or in croffe worke I extend them from the fine of 30 gr . vnto 6.00 in the line of numbers, the fame extent will reach from the fine of 7 gr .30 m .vnto 1.56 in the line of numbers; which thewes that in a circle of fix inches femidiameter, the diftance of the houre-points each from other will be about \mathbf{x} inch and 56 cente/mes or parts of 100 . The like reafon holds for the infcribing of all other chords in the Prop. following.

CHAP

CHAP. II.

To draw the boure-lines in a direct polar plane.

ADirect polar plane is that which is parallell to the houre of 6, here reprefented by $E P W$, wherein the fyle will be parallell to the plane, and the houre-lines parallell one to the other, and therefore may be beft drawne by that which I have fhewed in the vfe of the Se_{e}. ctor. They may be allo drawne by the helpe of thefe lines of proportion, in this maner.

Firft draw a right line W E for the horizon and the x g"ator, and croffe it at the point C, about the midle of the line with C B another right line, which may ferue for the meridian and the houre of 12 , and mult alfo be the fabftylar line whercin the ftyle hall ftund. Then, to proportion the fyle vito the plane, confider the length of the horizontall line, and what houre-lines you would haue to fall on your plane.

For the diftance of any one he ure-line from the meridian being knowne, we may finde both the length of the ftyie and the diftance of the reft : becaufe.

As the tangent of the houre given, is to the diftance from the meridian : $S 0$ the tangent of 45 gr . to the height of the ftyle,

Suppose the length of the horizontally line to be 12 inches, and that it were required to put on all the houre-lines from 7 in the morning vito 5 in the evening. Here we have 5 hours and 6 inches on cither fade the meridian. Wherefore I allow 15 gr . for an houre, and extending the companies from the tangent of 75 degrees I find the fame extent to reach in the line of numbers from 6.00 to about I. 6 I. This themes both the height of the ftyle, and the diftance of the houre-points of 9 and 3 from the meridian to be 1 inch, 61 parts.

> To find the length of the Tangent between the fubstylar and the bouse-
> points.

As the tangent of 45 gr . to the tangent of the hours:
So the height of the pyle
to the length of the tangent lias between the fubstylar, and the houre-points.

Thus having found the length of the pyle in our exam-
ple to be 1. 61, ifI extend the compafes from the tangent of 45 gr . vnto the tangent of 15 gr. the meafure of the firt houre from the fublylar, Ihall find the fame extent to reach in the line of numbers fromi. 6 r vnto 0.43 , for the length of the tan gent betweene the fubifylar and the houre-points of 11 and r. IfI extend them from the tangent of 45 gr . vnto the rangenr of 75 gr . the meafure of the fift houre, I hall finde them to reach in the line of numbers from 1.61 into 6.00 . for the length of the tangent from the fubltylar to the houre-points of 7 and 5 . For howfoever it be the fame diftant in the line of tangents from 45 vnto 75 , as from 45 vato 15 ; yet becaufe 75 are more, and 15 leffe then 45 , the tangent lines that anfwer to them wil be accordingly more or leffe shen the length of the fyle.

	$A_{0} \mathrm{P}_{0}$ Trang.
	Gr.M InPar
12	0000
II. 1	150043
10.2	300093
	345016
8.4	60.279
	550600
6.6	6190 olnfn.

Againe, ifI extend them from 45 gr . in the tangents vato 30 gr the meafure of the fecond houre, I hall finde them to reach in the line of numbers from I . 6 I vnto 0.93 for the houre of 10 and 2 : if 1 extend them from the tangent of 45 gr . vnto the tangent of 60 gr .for the fourth houre, I hall find them to reach in the line of nambers from 1.61 vnto 279, and fuch is the length of the tangent line from the fubitylar vnto the houre of 8 and 4. And the like reafon holdeth for the infcribing of all other tangent lines in the propofitions following.

But for fuch tangents as fall vader 45 gr , I may better vfe croffe worke, and extend the compaffes from the tangent of 45 gr vnto I .6 I in the line ofnumbers, fo thall I finde the fame extent to reach from 30 gr . in the tangents, to 93 parts in the line of numbers, for the diftance of the fecond houres and from 15 gr . in the tangents to 43 parts for the dittance of the fift houre from the meridiat.

Or ifthis extent from 45 gr . backward to 1.61 be too large for the compafles, I may extend them forward from the tangent of 5 gr .43 m.to 161 parts in the line of numbers, $\&$ the fame extent hall reach from 15 gr . in the tangents, to 43 parts in the line of numbers, for the diftance of the firft houre; and trom 30 gr . to 93 parts, for the diftauce of the lecond houre, as before.

Hauing found the length of the tangent lines in inches and parts of inches, and pricked them in the x guator on both fides of the meridian, from the center C; if we draw right lines through each of thofe points, croffing the x quator at right angles; they fhall be the hourelines required; and if we fet a flyle ouer the meridian, fo as the edge of it be parallel to the plane, and the height of it be as much aboue the meridian as the diftance between the meridian and the houre-points of 3 or 9 , it hall reprefent the axis of the world, and betruly placed for the calting of the fhadow vpon the houre-lines in a polar plane:

plane; and the houre-line parallell one to the other, as in polar plane, the difference being onely in the placing of the equator and in numbring of the h ures.

For in thefe meridian planes hauing drawne on occule verticall line $(Z$, and an occult horizontall lise $C \mathbf{N}$, crofing onc the other at right angles in the point C, the xquator $A C$ will cur the verticall with an angle $Z C$ A, equall to the latitude of the place: then may we croffe the xquator at right angles with the $\ln \in C B$ for the houre of 6 , and from this let off the houre-points in the xquator as in the former Prop.

For fuppofing the length of the ftple $C B$ to be ten inches, thelength of the tangent line belonging to the firt hourewil be $2 \mathrm{in}, 68 \mathrm{p}$. the length of the fecond sixy7 p. as
in the Table. Thien the tangent of $\bar{s} ; \mathrm{gr}$, being prickt downe in the aquator on both fides from 6; fhal ferue for the houres of 5 and 7 , and the tangent of 30 gr . for the houres. of 4 and 8 , and fo in the reft. This done, if we draw right lines through each of thefe points, croffing the xquat-
tor at right angles, they fial be the houre lives required: and if we fet a fayle ourer the houre of 6 , to as the edge of it may be parallell to the plane, and the height of it may be equail to the diftance betweene the houres of 6 and 9 in the aquator, it thall reprefent the axis of the world, and be truly placed for the caiting of the fhadow vpon the houre-lines in a meridian plane.

CHAP. III.

To drats the boure-lines in an horizontall plane.

A hoi izontall plane is that which An parallell to the horizon, reprefented in the fandamentall diagram by the outward, circle ESWZ, in which the diameter $s \mathbb{N}$ drawne from the South to the North, may go both for the meridian line and the meridian circle, Z for the zenith, P for the pole of the world, and the circles drawne through \boldsymbol{P} for the houre-circles of 2.3.3.4. \&cc. asthey are numbred from the meridian.

Thefe

5 Thefeare equall at the pole and at the xquator but vnequally diftantas she herizon the diftance between she weridian and the firf houre being not full iz gr 。 the diftance between the fifs and fixch houre aboue 18 gr . which inequality bring oblérued, if' you fuppofe right lines drawne trom the center C to the interfedions of thefe houre-circlés with the horizon, the lines fo drawne thall be the hourelines here inquired. And then if you can imagin a line drawne from the center C, toward P the pole of the world and raifed aboue the meridian line $C N$ fo as the angle PCN may be equall to the latitude of the place, this right line CP thall be the axis of the ftyle. And fo you haue both ftyle and houre-lines ready drawne to your hand. But more particularly to our purpofe.
Thefe houre-circles confidered with the meridian and the horizon, doe make diuers triangles, $P N 1, P \mathcal{F}_{2}, P \mathcal{L}$ 3 , in which we haue knowne firfthe rightangle at $2<$ the North interfection of the meridian and the horizon; fecondly the fide P 瓦, the arke of the meridian between the pote and the horizon, which is al wayes equall to the latitude of the place ; thirdly the angles at the pole, made by the meridian and the houre-circles, the angle χP I being is sí- KP 230 gr . each houre 15 gr. more then other, each halfe houre 7 gr .30 m , each quarter $3 . \mathrm{gr} \cdot 45 \mathrm{~m}$ as in the fecond columne of this table. And thefe three being known. we may finde the alks of the horizon between the meridian and the houre-circles $N_{3}, \mathcal{N}_{2}, N_{3}, \& c_{\text {. For. }}$

As the fine of 90 gr .
is to the fine of the latitude :
So the tangent of the houre
to the tangent of the houre line from the meridian.

Extend the compaffes from the fine of 90 gr . to the fite of the latiude, fo the fame extent fiall reach from the tangent of the houre, tathe tangen tof the houre-line from the

meridian. Thus the latitude being 51 gr .30 m . I extend the compalfes from the fine of 90 gr . to the fine of 5 Igr .30 $m, \&$ find the fame extent to reach from the tangerit of 3 gr .45 m . vntothetangent of 2 gr .56 m . for the diftance of the firtt quarter from the meridian; and from the tangent of 7 gr 30 m . vnto the tangent of 5 gr .52 m . for the halfe houre; and from the tangent of 11 gr . Is m . to the tangent of 8 gr . si m . for the third guarter; and from the tangent of 15 gr .0 m . vnto 11 gr . 30 m for the firtt hours: and fo thereft;, as in the third columne of this table voder the title of the arks of the plane.
Only when 1 come to fet one foote of the compaffes to 48 gr.

$43 \mathrm{gr}+45 \mathrm{~m}$. for the finding of a quarter paft 3 , the other toore will fall out of the line, and then I may either take out fo much as is out of the line bryond 45 gr . and turne it backe into the line, and it will reach from 45 gr . to $4^{1} \mathrm{gr} .45 \mathrm{~m}$. or I may vfe croffe worke, extending the compaffes from the fine of 90 gr . to the tangent of 48 gr .45 m . fo the fame extent wil reach from the fine of $5 \mathrm{I} \mathrm{gr}_{.} 30 \mathrm{~m}$, to the tangent of 4 r gr .45 m . And fuch is the diftance of the line of 3 houre $\frac{1}{4}$ from the meridian.

This done, I come to the Plane, and there according as the lines do fall in the fandamentall diagram,

I I draw a right line $S \sim \mathcal{L}$ feruing for the meridian, the houre of 12 and the fubftylar.

2 In this meridian I make choict of a center at C, and shere defcribe an occult circle reprefenting the horizon.

3 I find a chord of 11 gr .50 m . and infcribe it into this circle on either fide of the meridian for the houres of 17 and 1 ; in like maner, a chord of 24 gr .20 m . for the houres of 10 and 2 ; and 2 chord of $38 \mathrm{gr} .3 . \mathrm{m}$. for the hourcs of 9 and 3 ; and fo for the reft of the houres; their halues and quarters.

4 I draw rightlines through the center and the termes of thefe chords, and thefelines fo drawne are the houre-line required.

The line be longing to the houre of 6 will be perpendicular to the meridian, and the houre-lines before 6 in the morning, or after 6 in the evening may be fupplied by continuing their oppofet houre-lines be yond the center. As the houre-line of 7 in the morning continued will be the houre-line of 7 in the euening and fo the reft.

Laftly, I fet vp the ftyle ouer the meridian, fo as it may cut the plane in the center, and there make an angle with the meridian equall to the latitude of the place, fo it hall seprefent the axis of the world, and be truly placed for cafting of the thadow vpon the houre-lines in an horisontall plane.

CHAP. V.

To draws the boure-lines in a vertucall plane.

AVerticall plane is that which is parallel to the prime verticall carcle in the fundamentall diagram reprefented by E ZW. It hath two faces, one to the North, the other to the South; in cach of them the fubfylar will be the fame with the meridian line, and the angle of the ftyle aboue the plane will be equagll to $Z \mathscr{P}$ the complement of the latitude and the houre-lines here inquired may be fupplied by imagining right lines drawne from the center C to the interfections of the bourc-circles with $E Z W$.

The triangles here confidered are made by the verticall, the meridian, and the houre-circles, in which we know the fide Z. P, the angles at the pole, and the right angle at the zenith, and therefore may find the arks of the vericall, between the meridianand the houre circles after this maner :

As the fine of $g \circ \mathrm{gr}$:
is to the cofne of the latitude:
So the tangent of the houre
to the tangent of the houre-line from the meridian.

Extend the compaffes from the fine of 90 gr . to the line of the complement of the latisude, fo the lame extent fhal reach from the tangent of the houre, to the tangent of the houre-line from the meridian:

This in the latitude of $5^{1} \mathrm{gr} .30 \mathrm{~m}$. I extend the compaffes from the fine of 90 gr . to the fine of 38 gr .30 mm and S $\{$ find

138 The defcription of th: busere-lises in a vertical Plane. find the fams extent to reach from the tangent of 15 gr . to the tangent of 9 gt .28 m , for the diftance of the fir ft houre fron the meridian: and from the tangent of 75 gr . vn to the tangent of $66 \pi \% 42 \mathrm{~m}$ for the fif: houre: ald fo in the reft as in the Table following.

Thefe arks being knowne, I may come to the plane, and there by help of a thread and plummet draw a verticall line feruing both for the meridian and the houre of 12 , and the fubitylar; then may Idraw an occult verticall circle, and there in inilcribe the chords of thofe former arks, and draw the
the houre-lines, and fet vp the ftyle, as before in the horizontall plane.

If it be the South face of the plane, the center will be vpward, and the ftyle mult point downward; if the North face, the center mult be in the lower part of the meridianline, and the fyyle-point vpward in all fuch places as are to the Northward of the equinoctiall line, as it may appeare by confidering how the lines do fall in the fundamentall Diagram.

CHAP. VI.

To dram the boure-lines in a reerticall inclia

> ning plane.

AI.l thofe Planes that haue their horizontall line lying Eaft and Weft, are in that refpect faid to be verricall; if they be allo vpright and pafle through the zenith, they are di rect verticals; if they incline to the pole-they are direct polars: if to the equinoctiall, they are properly called equinociall planes, and are defcribed before : it to none of thefe three
 points, they are then called by the gentrall name of inclining verticals.

Thefe may incline either to the North part of the horizon, or to the South; and each of them hath two faces, S 12
one
one to the zenith, the other to the nadir, in which we are firlt to confider the height of the pole aboue the plane, by comparing the inclination of the plane to the horizon, with the latitude of the place.

As in cur latitude of 51 gr .30 m . if the inclination of the plane E IW in the fundamentall diagram hall be 13 gr . Northward, that is, if $I \mathbb{N}$ theark of the meridian berween the plane and the North part of the horizon fhall be 13 gr . We may take thefe 13 gr . out of $\mathcal{P} N 5^{1} \mathrm{gr} .30$ mu, the eleuation of the pole aboue the horizon, and there whl remain $P_{I}{ }_{3} 8 \mathrm{gr} .30 \mathrm{~m}$. for the eleuation of the North pole aboue the vpper face of the plane, and therefore 38 gr . 30 m2. for the height of the South fole abouc the lower face of the plane.

Or it the inclination of the plane fhall be found to be 62 gr . to the Southward, we may number them in the meridian trom S the South part of the horizon vnto L, and there draw the arke $E L W$ reprefenting this plaine; fo the arke of the meridian $P L$ fhall giue the height of the North pole aboue the vpper face of this plane to be 66 gr .30 m . and therefore the helght of the South pole aboue the lower face of the plane is alfo 66 gr .30 m .

In like maner if the inclination of the plane $E Y W$ hall be ${ }^{1} \mathrm{~g} \mathrm{gr}$. Southward, that is, if $S X$ the arke of the meridian between the South part of the horizon and the plane, fhall be 15.gr. The height of the North pole aboue the vpper face of the piane, and the height of the South poleaboue the lower face of the plane, will be allo found to be $66 \mathrm{gr} .30 . \mathrm{m}$.

But if the plane fhall fall betweene the zenith and the North pole, then will the North pole bee eleuated aboue the lower face, and the South pole aboue the vpward face of the plane, as may appear by the proiection of the fpheare in the fundamentall Diagram.

Then in the triangles made by the olane, the meridian, and the houre-circles, we haue the fide which is the height of the pole aboue the plane, together with the angles at the
pole; and the right angle at the interfection of the meridian with the plane, by which we may find the arks of the plane betweene the meridian and the houre-circles, after this maner.

> As the fine of 90 gr .
> is to the fine of the pole aboue the plane:
> So the tangent of the houre
> to the tangent of the houre line from the meridian.

Thus in the former example, where $P I$ the height of the pole aboue the plane was found to be 38 gr .30 m . it you thall extend the compaffes from the fine of 90 gr oto the fine of 38 gr .30 m . the fame extent will reach from the tangent of 15 gr . vato the tangent of 9 gr .28 m . for the diftance of the firft houre from the meridian, and from 30 gr . vnto 19 gr .46 m . for the fecond houre, and fo forward as in the direct verticall.

And for the two laft examples, you may extend the compafles from the fine of 90 gr . vnto the fine of $66 \mathrm{gr} .30 \mathrm{~m}: \mathrm{fo}_{0}$ the fame extent fhall reach in the line of tangents from 15 gro vnto 13 or. 48 m . For the firlt houre, from 75 gr . vnto 73 gr . 43 m . for the fift houre, from 30 gr . vnto 27 gr .54 m . for the fecond houre, from 60 gr. vnto 57 gr .48 m. for the fourth houre, and from 45 gr . vnto $4^{2} \mathrm{gx} \cdot 3 \mathrm{I} . \mathrm{m}$. for the thid houre from the meridian.

Thefe arkes being knowne, you may firf draw the horizontalline, and croffe it in the middle with a perpendicular that may ferue both for the meridian and the houre of $x 2$, and the lublyylar ; then knowing which pole is cleuated aboue the plane, you may accordingly make choice of a fit point in the meridian for the center of your houre-lines, and thence defcribean occultarke of a circle, infcribe the chords of thofe former arkes, and draw the houre lines, and fetavp the ftyle, as I fhewed before in the horizontall plane.

CHAP. VII.

To draw the houre-lines in an reerticall declining Plane.

ALl vpright planes whereona man may draw a verticak line, are in this refpect faid to be verticall; if they fhall. alfo ftand directly Eaft and Weft, they are direat verticals; if directly North and South, they are properly called meridian planes, and are defcribed before: if they behold none of thefe foure principall parts of the wolrd, but fhall ftand between the prime verticall and the meridian, they are then called by the generall name of declining verticals.

Thefe haue two faces, one to the South, the other to the Northward. which may be diftinguifhed in thefe Northerne parts of the world after this manner, If the Sunne coming to the meridian fhall fhine vpon the plane. it is the Sourh face; if not, it is the North face of that plane. Againe, if the Sunne thall thine vpon the plane at high noone, and yet longer in the forenone then in the afternoon, it is the Southeaft face; if longer in the afternoone then in the forenoone, it is the Southweft face of the plane. But how much the declination cometh to, is beft found as before.

Whenthedeclination is found, there be foure things more to be confidered before we can come to the drawing of the houre-lines.

I The meridian of the plane and his inclination to the meridian of the place.
2 The bight of the pole aboue the plane.
3 The diftance of the fubltylar from the meridian line
4 The diftance of each houre-line from the fubltylar.
And thefe foure may all be reprefented in the fundamentall Dingram as in this example.

Suppofe that in our latitude of $5 \mathbf{1 g r} \cdot 30 \mathrm{~m}$. northward the declination

The defcription of the hoare-lines.

declination of an vpright plane vide Pag. i14. line 20.
In the triangle $P R Z$ we know the angle at K to be a righe angle, and the angle at Z, for it is the complement of the declination, and the bafe P, Z, for $i t$ is the complement of the lacitude. And thefe three being. knowne we may finde the other angle $R P Z$, which is the angle of inclination betweene both meridians.

As the fine of the latirude. is sothe fine of goger.

So the tangent of the declination

to the cangent of finclination of meridian.

Thas in our former example I extend the compaffes from the fine of the latitude 5 gr .30 m , vito the fine of 90 gr . the fame extent will reach in the line of tagents from 24 g . 30 m . the declination giuen, to abour 30 gr and fuch is $Z P R$ the angle of inclination between the meridian of the place and the meridian of the plane; and therefore the meridian of the plane will here fall vpon the circle cf the fecond houre from the meridian of the place, (as it may alfo appeare by opening the compaffes to the neareft extent, between the pole and the plane) and there I place the letter R to make this rectangle PRZ.

$$
2 \text { Io find the hight of the pole abose the plase. }
$$

The height of the pole is to meafured in the meridian of the plane it is here reprefented by the arke P R, and may be found by that which we bauc knowne in the former triangle $P R Z$.

As the fine of 90 gr . to the cofine of the latitude:
So the cofine of the declination
to the fine of the hight of the pole abone the plane
Extend the compaffes from the fine of 90 gr . vito the fine of 38 gr .30 m , the complement of the latitude, and the fame extent will reach from the fine of 65 gr .40 mm . the completh ment of the declination, vito the fine of 34 gr .33 m .

Or if you pleafe to make ve, of the angle of the inclination of the twa meridians, the proportion will hold.

A s the fine of 90 gr .
to the cofine of the inclination of meridians:)

So the cotangent of the latitude to the tangent of the height of the pole aboue the plane.

And then you may extend the compaffes from the fine of 90 gr . vnto the fine of 60 gr . the complement of the inclination of the meridians, and the fame extent will reach from the tangent of 38 gr .30 m . the complement of the latitude, vnto the tangent of $34 \mathrm{gr}_{0} 33 \mathrm{~m}$. and fuch is the arke $P R$, the hight of the pole aboue the plane.
3 Tofind the diftance of the fubfylar from the meridian.
This is here reprefented by the arke $\mathbf{Z} \mathbf{R}$, and may be found by that which we haue knowne in the former triangle $P R Z$

> As the fine of 90 gr .
> to the fine of the declination:
> So the cotangent of the lati ude to the tangent of the fubitylar from the meridian.

Extend the compaffes from the fine of 90 gr . vnto the fine of 24 gr .20 ms othe declination giuen, and the fame extent will teach from the tangent of 38 gr .30 m , the complement of the latitade, vno the tangent of 18 gr .8 m , and fuch is the arke $\mathrm{Z} R$, the diftance of the fubitylar trom the meridian.
4 To find thediftance of cach boure- line from the fabfylar:
The diftances of the houre-lines from the fubltylar, are here reprefented by thofearks of the declining verticall belonging to the plane, which are intercepted betweene the proper meridian of the plane and the houre-circles.

To this purpofe we haue diuers triangles made by the declining plane, together with his proper meridian and the houre-circles. In thefe we haue knowne, firlt the right angle at the interlection of the proper meridian with the plane;then

$$
\mathrm{Tt}
$$

the
the fide which is itic itight of the pole aboue the plane; and thirdly the angles at the pole. For knowing the angle of inclination betweene the meridian of the plane and the meridian of the place, whichis alwayes the houre of 12 , we may finde the angle bet weene the meridian of the plane and the houre of I , by allowing in 15 gr . and the angle berweene the meridian of the plane and the houre of 2 by allowing in 30 gr . and fo for the reft, which being knowne and fet down in a table we may find the arks of the plane from the fubltylar to the houre-circles, in this maner.

> As the fine of 90 gr .
> to the fine ot the hight of the pole aboue the plane: So the tangent of the houre from the proper meridian, to the tangent of the houre-line from the fubstylar.

Thus in our latitude of 51 degrees 30 minntes, if the declination of an vpright plane hall be found to be 24 gr .20 m. from the prime verticall, the one face open to the Southweft, the other to the Northeaft, I may number thefe $24: r$. 20 m. in the horizon of the fundamentall Diagram, from E vato B, according to the fituation of the plane, and there draw the verticall $B Z D$, which thall reprefent the plane propofed.

The two poles of this plane will fall in the horizon at H and 2 and therefore the proper meridian drawne through the poles of the plane, and the pole of the world mult be the circle $H P Q$ which here croffeth the plane at right angles. in the point R, and inclineth to $P: Z S$ the meridian of the place, according to the angle $R P$ Z.

The quantity of this inclination may be readily found by the houre circle where the proper meridian falleth. As here it falleth on the fecond houre circle, and fo the inclination is 30 gr .

The height of the pole above the plane which giueth the height of the ftile aboue the fubltylar is here reprefented by thearke $P \mathcal{R}_{e}$ Foras in the Horizontall, fo in this and all oo
ther planes the line $C P$ the axis of the world is alwaies the axis of the ftile, and the neereft line that can bedrawne vpon the plane to the axis of the world is the fitteft for the fubftylar, and that is the line $C R$, fo the angle $P C R$ is the angle betweene the axis and the plane, commonly called the height of the ftyle and the meafure of this angle is the arke $\boldsymbol{P} \boldsymbol{R}$, This arke is alwayes leffe then the complement of the latitude, and may be eftimated by taking the diftance $P \boldsymbol{R}$ with the compaffes, and meafurlng it in the Meridian from \mathcal{P} toward Z. So in this example it will appeare to be about $34 \mathrm{gr} \cdot \frac{1}{2}$.

The diftance of the fubitylar from the meridian is bere reprefented by the arke Z R. For the meridian line vpon the plane is $C Z$, the fubitylar line is $C R$, fo the angle contained betweene them is $Z C R$, and the meafure of this angle is the arke $Z \mathrm{R}$, which taken with the compaffes and meafured in the lemidiamiter $C W$, from C toward W, will be found about 18 gr .

The diftances of each houre line from the fubftylar are here reprefented by the arks of the plane between the point R and the incerfections of the houre circles. For the futftylar line is $C R$, and the houre circle of 1 crolfing the plane in the point O, the houre line of I vpon the plane, muft be CO , So the angle berweene the fubftylar and the houre line of I_{I} is $\mathrm{R} O$, and the meature of this angle is the arke $R O$. In like manner the houre line of 12 will be $C Z$, and the diftance from the fublylar R Z. The houre line of II, will be $C X$ and the diftance from the furbtylar $\mathrm{R} X$ and fo the reft. Thefe diftances $\mathrm{R} O, \mathrm{R} Z, \mathrm{R} X, \& c$. may alfo be taken with the compaffes, and meafured as before.

Befides thefe foure reprefentations the diagrame will thew what pole is elevated above the plane, and what time the Sun fhineth vpon the plane. If it be the North-Eaft face of this plane, you may thinke P to be the North-pole, and the houre circles to be drawne on a convex hemifphare, to C R the fubitylar, and CP the axis of the file will both point vpward, and having drawne the tropique of 50 you
flall find by the meeting of the plane with the tropigue, and the houre circles, that the Sun at the higheft, may Thine vpon the plane, from the time of the rifing uintill it be paft. 9 in the morning, and from y in the Evenaing unto the time of his fetting. But if it be the Sourh-weft face of the plane, then you may either fuppote the fubfylar, and the axis to be continued downe belowe the center, like unto the houres before and after 6 in an horizontall plane, or clle you may turne the diagrame and thinke P to be the South pole, and the houre circles to be dawne in an horizontall concave fo C R the fubftylar, CP the axis of the file will both point downward, and fo alfo the houre lines from 8 to the, morning untill after 7 in the Evening, as it doth appeare by the meeting of the plane with the horizon, and the houre circles.

Thus with the drawing of one line in the diagram to reprelent the plane according to his declination, you ray have the houre lines fitted to any declining verticall with the ftyle and fubftilar in their due place, which may fuifice to free you from groffe crror, but for more exactneffe; wee confider three triangles.

1 To.find the inclination of cuteridians.

The meridian of the place is a circle paffing through the poles of the world, the Zenith and the nadir. The proper meridian of the plane is a circle paffing through the poles of the world and the poles of the plane. The circle of the plane, and thefe two meridians doe make a triangle, fuch as PRZ, wherein we know the angle at R.

I confider the angle of inclination of the meridians R P Z,and there fee how that PZ the meridian of the place, which is the houre of 12 ,being 30 gr . diftant frö P R the meridian of
the plane, and that one face of the plane being open to the Southweft, and the other tothe Northeaft, this meridian of the plane falleth to be the fame with the houre of $2,(0-$ therwife with the houre of 10 :) therefore allowing $15^{\prime} \mathrm{gr}_{0}$ for an houre, the houre of $\mathrm{r}, R P O$ will be 15 gr . and R $P X$ the houre of it will be 45 gr, diftant from P R the proper meridian of the plane : and fo I gather the incliation of the reft of the Latitude N. 5130. hourecircles towaids this meridian, Declinatio: 2420 . according to theirangles atathe pole, Diff, merid: 300. as in the fecond colume of this Table. Alt. Styl: $3433 \cdot$
Then taking my compaffes in my
Dift fubft $18=8$. hand, I extend them from the fine of 90 gr . vnto the fine of 34 gr .33 m. the hight of the pol aboue the plane, and find them to reach in the line of tangents from 15 gr .the inclination of the houre of 1, to 8 gr. 38 m . for the arke of 1 , from the fubltylar, and from 30 gr . vito 18 gr .8 m . for the houre of 12 , agreeable to the third Prop.\& from 45 gr . vnto 29 gr . 33 mm . for the houre of II , and fo the reft, which Ialfo fet downe in the third columne of the Table.
Thefearks being thus found, will ferue for the drawing of the houre

Hourc	Ang Pa	Ar.Dla
M.E.	$\overline{\mathrm{Gr} . \mathrm{M}}$	Gr. M.
48	90	90.0.
57	750	644^{2}
6	60 -	4430
5	450	2933
84	30 -	18
93	15 O	838
102	Merid	fubftyl
11	150	838
12	30.0	188
111	45 a	2933.
210	60 O	4430
39	75 -	6442
48	190 ol	90-0

I By the heipe of a thread and plammet I diaw a verticall line, feruing both for the meridian of the place and the houre of 12 .

In this meridian line Imake choice of a center ar C. in the vpper part of the line, if it be the South face, as bere we fupz

150

Thedefcription of the boure-lises.

 pofe it, that the fiyle may haue roome to point downward; but in the lower part of the line, if it be the North face of the plane; for there the fyle mult poinc vpward : and vpon this ceater I defrribe an occult circle, reprefenting the declining verticall belonging to the plane.3 I find a choid of $18 \mathrm{gr}^{2} 8 \mathrm{~m}$, theldiftance of the fubitylar from the meridian of the place, and infcribe it into thas circle, from the meridian vnto A toward the righe hand, becauie in this examplethe meridian of the plane talls among the houres atter noone, (for otherwife it mult have

been inferibed toward the left hand) and there I draw the line C A feruing for the fubftylar.

4 According to the Table of the arkes of the plane from the fubftylar, I find a chord of $8 \mathrm{gr} \cdot 38 \mathrm{~ms}$ - and infcribe it into this circle, from the fubflylar toward the meridian, for the houre of I . In like maner a chord of 29 gr .23 m .for the houre of I I, and a chord of $44 . \mathrm{gr} .30 \mathrm{~m}$. for the houre of 10 , and fo for the reft of the houres, their halues and guarters.
5. I draw right lines through the center and the termes of thefe chords, and thete lines fo drawne are the houre-lines required.

Laftly, I fet vp the ftyle over the fubftylar; fo as it may cut the plane in the center, and there make an angle with the fubitylar of 34 gr .33 m . according to the height of the pole above the plane; fo it fhall reprefent the axis of the world, and be truely placed for cafting of the fhadow vpon the houre lines in this declining plane.

A Second example.

Suppole another vpright plane in the fame latitude to decline from the verticall 65 gr .44 mm . with one face open to the Scuth-Eaft, the other to the North-weft. There $\sigma_{5} g r$. 40 m . would be numbred from E unto 2 and from w unto H. and the plane reprefented by $2 Z H$. For fo the one pole will fall at B in the South-Ealt, and the otherat \mathcal{D}. in the North-weft according to the fuppofition. The proper meridian of this plane may be fupplyed by the circle \mathcal{B} P. \mathcal{D}, crofling the plane in the point T, betweene the houre of 7 and 8 , and there is the place of the fubfylar. The South-Eaft face will contaige atl the houres from Sun rifing vnto two afternoone, and the Northweft face all the houres from one after noone vato Sunne fetting. Then working astbefore.

- The angle ZPT the inclination of the two meridians.

2 The arke P The meafure of the angle P C T, the hight of the pole aboue the plane, and fo the hight of the ftyle aboue the fubitylar will be $14 . \mathrm{gr} . \mathrm{ys}^{\mathrm{m}}$.

3 The arke $Z T$ the mealure of the angle $Z \mathrm{CT}$, Thewing the diftance of the fubftylar from the meridian will be 35 gr. 56 m .

4 The arks of the plane be. tweene the fubftylar and the houra lines :depending on the difference of meridians which is here $70 \mathrm{gr} .30 \mathrm{mor} 4 \mathrm{Ho} .4^{2}$ m. Ihort ot the meridian I firft draw a table with three columnes, one for the morning and euening houres,another for the angles at the pole and the third tor the arks of the plane and there write 70 gr .30 m . by the houre of 12 and place the meridian and fubftylar between the houres of 7 and 8 according as the poles of the plane do fall in the Diagram.
Then will the angle at the pole betweene the proper 'meridian and the houre of in be 55 gr .30 m the houre of so will be 40 gr .
 30 m , diftant from that meridian and the reft in their order which being noted in the fe: cond columne, the arks of the plane will be found to be fuch as I haue noted in the third columne.

With this table thus made, you may draw the houre-lines and fet vp the ftyle on either face of this or the like plane, the difference being onely in the placing of the fubstylar and that is refolued by the fight, of the Dia. gram.

\mathcal{A} third example of a Plane falling neere the Meridian.

After the like manner if in our latitude an vpright plane fhall decline 85 .gr. from the prime verticall, the one face of ie being open to the Northweft, and the other to the Southealt, we may in fome fort reprefent ic by the verticall $2 Z \mathrm{H}_{3}$ and then working as before.

I The angle $Z P T$, the inclination of the two meridians will be found to be $86 \mathrm{gr} . \mathrm{s} \mathrm{m}$. fo that $P T$ the meridian of this plane, will here fall betweene the houre-circles of σ and 7 from the meridian.

2 The arke $P T$ the meafure of the angle $P C T$, the heighe of the pole aboue the plane will be onely 3 gr .6 m .

3 Th: arke $Z T$ the meafure of the angle $Z C T$, the di ftance of the fubfylar from the meridian 38 gr .23 m 。

F 4 The Table of the angles ar the pole will be allo gathered, by comparing the meridian of the plane with the reft of the hourc-circles. For the angle $T P Z$ betweene $P T$ the meridian of the plane, $P Z$ the meridian of the

Latitude 5 I $^{\circ} 3^{\circ}$ Declination 85° Diff.Merid. 86 s Altitude fyyl. 3.6 Dift.fubfty. 3823 place, and the houre of 12 , being $\delta 6 \mathrm{gr}$.

$$
V u \quad s m o \text { allow }
$$ an houre, the houre of $1 x_{\frac{1}{2}}$ will be 78 gr .35 m . and the houre of 1171 gr .5 m . dultant from the meridian of the plane; and fo' the relt of the houres. Or becaufe the difference of meridians 86 gr .5 m . refolved into time makes 5 : houres, 44. m . and fo the meridian of the plane falls betweene the houres of 6 and 7 from the meridian. 1 firlt place this meridian betweene thefe houres, and then caking 75 gr . the common meafure for s houres out of 86 gr .5 mm . there remaine 11 gr .5 m . for the angle at the pole

 betweene the meridian of the plane and the houre of 7. againe I take 86 gr .5 km . out of 90 gr . the common meafure for 6 houres, and itere remaine 3 gr . 55 m . for the angle at the pole betweene the meridian ot the plane and the houre of 6 . To thefe ang'es fo found I allow 15 gr . for cuery houre, as in the fecond columne of this Table.

Then hauing the height of the pole aboue the plane, and thefe angles at the pole; the arkes of the plane, betweene the fubltylar and the houre-circles, will bee found as in the third columne.

Thefe arkes being found, will ferue for the drawing of the houre-lines on either face of this or the like plane.
I By the helpe of a thread and plummet Idraw $Z C$ a versicall line, feruing both for the meridian of the place and the boure of 12.

F Inthis meridian line I make choice of a center in the vpper
vpper part of the line, if it had biene the Southerne face of the plane, but here in C the lower part of the line, becaule we luppoted is to bee the Northweit tace ot the plane, and the ity le mult point vpward; and vpon this center I delicribe an occult circle reprefenting the declining verticall belonging to this plane.

31 finde a chord of 38 gr .23 m . the diftance of the fub-

fylar from the meridian of the place, and infcribe it into this circle, from Z in the meridian, vnto T toward the left hand, according as the proper meridian $\boldsymbol{P} \boldsymbol{T}$ falls in the fundamentall Diagram; and here I draw the line CT feruing for the fubitylar.

$$
V_{u} 2 \quad 4 \text { The }
$$

4 The fubtylar being drawne, I may infcribe the chords of tyearkes of the plane from the fubftylar, and draw the houre-lines, and fet vp the ftyle as in the former plane.

Or the arkes of the plane from the fubitylar being found as before, wee may draw the houre-lines vpon the plane otherwife then by chords. For hauing drawne the houre-lines as in the laft figure, vpon paper or paift boord, we flall finde the molt part of them, in this and fuch like plaies that haue greater declination, to fall fo clofe together, that they can hardly be difcerned: wherefore to draw them at large to the beft aduantage of the plane. I leaue out the center, and draw them by tangents, as in the dolar plane.
I I confider the lengthand bredth of the plane whereon I am to draw the houre-lines, which I fuppofe to be a fquare, whofe fide is 36 inches, and find that the little fquare $A B D E$ will containe both the fubfylar and all thofe houre-hnes which are required in the great fquare $\mathrm{A} Z \mathrm{CQ}$.

2 I draw two parallel lines FN, GM, crolling the fubftylar at right angles in the points Fand G, fo as they may beft croffe all the houre-lines, and yet the one be diftant from the other as tarre as the plane will giue me leaue; and I finde by the fight of the figure that if $A \mathcal{B}$ the fide of the leffer \{quare fholl be 36 inches, the line $\mathrm{C} F$ will be about 115 inches, and the line C G about 100 inches, and therefore F G 15 inches. Againe, that the point F will fall about 6 inches below the vpper horizontall fide $A \mathcal{B}$, and about 12 inches from the next verticall fide $\mathcal{B} D$; for I need not here ftand vpon parts.

3 Becaufe thefe two parallel lines are tangent lines in refpect of circles drawne vpon the femidiameters C F, CG, and fuch tangent as belong to the arkes of the plane, being iweene the iubfylar and the houre-lines, the proportion will hold,

As the tangent of 45 gr .
to the tangent of the arke of the plane: So the length of the femidiameter
to the length of the tangent line.

As for example, the atke of the plane betweene the fubftylar and the houre of 1 , is $15 \mathrm{gr} \cdot 28 \mathrm{~mm}$. in the former Tab'.., the femidiameter C F 115 inches, and the femidiametcr $C G$ 100 inches: wherefore I extend the compaffes from the tangent of 45 gr . vnto the tangent of 15 gr .28 m . the fame extent will reach from 115 in the line of numbers vnto 31, 82, which fhewes the length of the tangent line betweene F in the fubitylar and the houre-line of I , to be 3 I inches, 82 cent. or parts of 100 . Againe, the fame extent will reach from 100 vato 27,67 ; and fuch is the length of the leffer tangent from G to the houre of 1 .

The like reafon holds for the length of the other tangents from the fubitylar to the relt of the houres, as in the Table; as alfo for the height of the ftyle aboue thefe tangent lines; and fo the angle of the ftyle aboue the plane being 3 gr .6 m. the height FK will be found to be 6 inches 23 cent. and the height $G L \leq$ inches 4^{2} eent.

Where the Reader may oblerue, that if the extent from the tangent of 45 gr . to the tangent of 3 gr .6 m . or to 115 g in the line of numbers, be too large for his compaffes, hee may vfe the tangent of 5 gr .43 m . inftead of the tangent of 45 gr . as I noted before Pag.ico.

4 Hauing found thefe lengths and heights, and fet them downe in a Table, I come to the plane here refembled by the leffer fquare $A B \mathcal{D} E$, where I begin with an occult verticall F H, about 12 inches from the fide $\mathcal{B} D$, and vpon the center F, abount 6 inches below the fide $A B$ defcribe an occult arke of a circle.

5 Into this arke I firft infcribe a chord of 38 gr .23 m . the diftance of the fubstylar from the meridian, to make the angle $H F G$ equall to the angle $Z C T$; fo the line $F G$ thall be the fubftylar: and then another chord of 51 gr .37 m . the complement of this diffance, to make vp the right angle GFN; fo the line FN fhall be the greater of the two tangent lines before mentioned.

6 Ifet off is inches from F unto G, toward the center, the former.

7 Thefe two occult tangent lines being thus drawne, I looke vnto the former Table for the houre of 8 , and there finde the arke of the plane betweene the fubftylar and the houre of I , to be $15 \mathrm{gr}, 28 \mathrm{~m}$ and the length belonging to it in the greatertangene line to bee 3 I inches, 82 cert. in the lefier tangent line 27 inches, 67 cent: wherefore I take out, 38 inches 82 parcs, and pricke them downe in the greater tangent from F to N, and then 27 inches 67 parts, and prick them downe in the leffer tangent from G to M, and draw the line $M \mathcal{N}$ for the houre of 1 , which if it were produced would croffe the fubitylar $F G$ in the center C, and there make the angle F C $215 \mathrm{gr}_{\mathrm{r}} 28 \mathrm{~m}$. The like reafon holdeth for the drawing of all the reft of the houre-lines.

Laftly, I fet vp the ftyle right oner the fubftylar, fo as the height $F K$ may be 6 inches 23 eest. and the height $\mathcal{G} L$ inches 42 certs. then thail $K L$ reprefent the axis of the world, and if it were produced would crofe the fubftylar FG in the center C, and there make the angle F C K to bee 3 gr .6 m . and fo be truly placed for carting of the fhadow vpon the houre-lines in this declining plane.

CHAP. VIII.

Todraw the boure-lines in a meridian inclining Plane.

AL thofe planes wherein the horizontall line is the fame with the meridian line, are therefore called meridian planes : if they be right to the horizon, they are called by the generall name of meridian planes without farther addition, and are defcribed before: if they leane to the horizon, they are then called meridian incliners.

Thefe

Thefe may incline eitherro the Eaft part of the horizon, or to the Weft, and each of them hath two faces, the vpper toward the zenith, the lower toward the Nadir, wherein knowing the latitude of the place, and the inclination of the plane to the horizon, we are to confider.

1
The inclination of the meridian of the plane to the meridian of the place.
2 The height of the pole about the plane.
3 The diftance of the fubitylar from the meridian.
4. The diftance of each houre-line from the fubitylar. And all thefe foure are reprefented in the fundamentall Diagram, as in this example.

In our latitude of 51 gr .30 mo a meridian plane inclineth Eaftward $\rho_{0} \mathrm{gr}^{\text {; thefe }} \mathrm{s}_{\mathrm{g}} \mathrm{gr}$. I number in the verticall circle from E vnto G, according to the inclination of the plane, and there draw the arke $S \mathcal{G} \mathcal{Z}$ reprefenting the plane propofed. Againe I number 50 from Z vnto K, fo the point K (being 90 gr . from the plane at G) Thall bee the pole of this plane and the proper meridian of this plane may bee fupplied by a circle drawne through K and P. This meridian doth here fall betweene the houres of 4 and 5 , and croffing the plane at right angles in the point V, in the right line C V haill be the fubltylar, and the angle $P \subset V$ the height of the flyle aboue the plane and right lines drawne from the center C to the interfections of the houre-circles with $S G N$ fhall bee the houre-lines here inquired. Thelower face of the plane will containe all the houre-lines from funrifing vnto in in the morning, and the vpper face the houres from 9 in the morning vito fun-fetting. Thea haue I a rectangle triangle $P \vee \mathcal{X}$, wherein the bafe $P \mathcal{X}$ is the height of the pole aboue the North part of the horizon, and the angle $P \approx$ V the complement of the inclination to the horizon;and thefe being knowne,

1 I may finde the angle $\mathcal{N P}$ Vof inclination of the two meridians. For

As the coline of the latiude
So the tangent of inclination to the horizon, to the tangent of inclination of meridians.

- Extend the compaffes from the fine of 38 gr .30 m , the complement of the latitude, vnto the fine of 90 gr , the lame extent will reach from the tangent of 50 gr .0 m . the inclination of the plane tothe horizon, vnto the tangent of $\sigma_{2} \mathrm{gr} .25$ m. and fuch is the inclination of the meridian of the plane to the meridian of the place; which being refolued into time ${ }^{\circ}$ doth giue about 4 houres and to m. from the meridian, for the place of the fubftylar among the houre-lines.

2 The height of the pole aboue the plane is here reprefented by the quantity of the arke of the proper meridian $P V$, betweene the pole and the plane; and may bee knowne by that which wee haue giuen in the former triangle $P_{,}$ V^{\prime} Kor

As the fine of 90 gr .
to the fine of the latitude:
So the cofine of the inclipation to the horizon, to the fine of the height of the pole aboue the plane.

Extend the compafies from the fine of 90 gr. vnto 5 gr . 30 m. the fine of the latitude, the fame extent will reach from the fine of 40 gr . the complement of the inclination of the plane to the horizon, vnto the fine of $30 \mathrm{gr} .12 . \mathrm{mm}$.

> Oras the fine of 90 gr . to the cofine of inclination of meridians :
> So the tangent of the latitude
> to the tangent of the height of the pole aboue the plane

Extend the compa fies from the fine of 90 gr . unto the tangent of $\mathrm{s}^{\mathrm{gr} .} 30 \%$. the latitude of the place, the fame extent will reach from the fine of 27 gr .3 s m , the complement
of the inclination of the two meridians, anto the tangent of 30 gr . 12 m . And fuch is P V the height of the pole aboue the plane, and fuch muft bee the height of the fyle aboue the fubftylar.

3 The diftance of the fubstylar from the meridian is here reprefented by 2 VV thearke of the plane betweene the two meridians, and may be found by that which we have giuen at the firt in the former triangle $P \vee \mathcal{N}$. For

> As the fine of 90 gr .
> to the fine of the inclination to the horizon:
> So the tangent of the latitude
> to the tangent of the fubftylar from the meridian.

Extend the compaffes from the fine of 90 gr , vnto the tans gent of 5 gr .30 m . the latitude of the place, the fame extent will reach from the fine of 50 gr . the inclination of the plane to the horizon, vnto the tangent of 43 gr .55 m . And fuch is the arke $₹ V$ the diftance of the fubftylar from the meridian.

4 The diftances of the houre-liaes from the fubftylar, are here alfo reprefented by thofe arkes of the plane, which are here intercepted betweene the proper meridian and the houre-circles, and may bee found by that which we haue giuen in the triangles made by the plane, with his proper meridian and the toure-circles. For the angle at V, betweene the plane and the proper meridian, is well knowne to bee a right angle, and the fide $P V$ is the height of the pole aboue the plane, and the angles at the pole betweene the proper meridian and the houre-circles are eafily gathered into a Table. The angle V PN betweene V P the proper meridian of the plane, and PN the generall meridian of the place being $62 \mathrm{gr}_{.} 25 \mathrm{~m}$. the angle betweene the proper meridian and the
circle of the hemre of 1 I , will bee 77 gr /Latitude 5130. 25 m . and the angle belonging to the finclination 500.
houre of 1.47 gr 2 s . m , and to the reft of the angles at the pole. Then

As the dine of $g \circ g r$.
to the fine of the pole aboue the plane:
So the tangent of the angle at the pole, to the tangent of the houre-line from the fubitylar.

Wherefore I extend the compafes from the fine of 90 gr . vnto the fine of 30 gr .12 m , the height of the pole aboue the plane, and I finde the fame extent to feach in the line of tangents from 77 gr .25 m . wnto 66 gr .4 m . for the diftance belonging to the houre of 11 ; and from the tangent of 62 gr .25 m . to 43 gr .55 m . for the houre of 12 as when

Diff. Meric. 6225
Alr. ftyli 3012
Dif. fublty. 4355

	Ang	
	Gr.	
	62	43
	4725	
	3225	
	1725	
	225	
	Merid	
	12	
	2735	1
	4235	24
	5735	
	72.35	
	735	

Thefe arks being thus found, will ferue to dsaw the hourelines on either fide of this plane: but luppofing it to bee the vpper fide,

I I draw the horizentall line $C N$, feruing for the meridianatud houre of 12.
2. In this line I make choice of a center at C, and thence defcribe an occult arke of a circle reprefenting the plane propored.

3 I find a chord of 43 gr .55 mm . the diftance of the fubftylar from the meridian, and infcribe it into this circle from \mathbf{N} vnto \mathbf{A}, according as I finde the proper meridian $\mathrm{P} V$ to fall in the fundamentall diagram, and there I draw the line CA, feruing for the fubfylar.

4 The fubftylar being drawne, I may inferibe the chords of the arkes of the plane from the fubtylar, and draw the houre-lines, and fet up the ftyle, as in the former planes.
CHAP. IX.

Io draw the houre-lines in a polar declining Plane.
Hofe planes wherein a line may be drawne parallell to the axis of the world, are called polar planes, becaufe $\mathrm{X} \times 2$ that
that line pointeth vnto the poles, and thefe planes are always parallell to forme one of the houre-circles. If they be parallell to the hourc of 6 , they are called direct polar planes; if to the houre of 12 , they are callid meridian planes; and both thele are defribed before: if to any other of the houre-circle;, they are then called by the name of polar declining planes, becaule of their inclining to the pole, and declining from the verticall.

The efekind of plares may be knowne in thisfort: Fiift confider the inclination of the plane to the horizon, which in thefe parts of the world muft alwayes be Northward, and more then the latitude of the place. Then find the declination from the verticall. Thefe two being knowne, if the pro. portion hold,

> As the fine of 90 gr . to the cofine of the declination:
> So the tangent of the inclination to the tangent of the latitude ; it is then a polar declining plane, otherwife not.

For example, in ourlatitude of $5 \mathrm{I} \mathrm{gr}^{2} 30 \mathrm{~m}$, a plane is propofed declining from the verricall 65 gr .40 m . and inclining Northward 71 gr . 51 m . the vpper face being open to the Southeaft, and the lower to the Northweft. If I number thofe $65 \mathrm{gr}^{2} 40 \mathrm{~m}$. in the horizon of the fundamentall diagram from $\varepsilon_{\text {vnto }}$, and draw the line $H C$ Q, it fhall reprefent the horizontall line of the plane; then croffing it at right angles with the plane $B Z D$ drawne through the zenith, I number $7^{1} \mathrm{gr}$. $\mathrm{s}^{1} \mathrm{~m}$. for the inclination from \mathcal{D} vnto \mathcal{R}, and there draw the circle $H R$ Q, this circle fo drawne thall reprefent the plane propofed;and becaule it alfo paffech through the pole, it is therefore a polar plane. But for farther tiall 1 extend the compaffes from the fine of 90 gr . to the fine of 24 gr .20 m . the complement of the declination, and I find the fame extent to reach from the tangent of $7^{1} \mathrm{gr} . \mathrm{g}_{1} \mathrm{~m}$. the inclination propofed, vnto the tangent of $5^{1} \mathrm{gr}, 30 \mathrm{~mm}$, which
is the true latitude of the place, and therefore it is a polar plane.

Agane I number the inclination $71 \mathrm{gr} . \mathrm{gI}_{\mathrm{I}} \mathrm{m}$. in the circle $B \mathrm{Z} D$ from Z vnto M. fo this point M, will fall at the meeting of $\mathcal{B} Z D$ with the equator and being 90 gr . from the plane at R, it thall be the pole of this plane, and a circle drawnn through M and P will be the proper meridian of this plane. This meridian $M P$ here falling on the houre of 8 doth giue MP Z the angle of inclination of meridians so be 4 houres or 60 degrees, then croffing the plane at the point \mathcal{P} it hewes that the fubltylar fhould be $(P$ and be placedat the houre of 8. But brcaufe P is the pole and $C P$ the axis of the world, wherein all the houre circles doe meet, and fo there would be no diftintion betweene the axis, the fubitylar and the hourelines. I now fuppofe the plane in a parallell to the circle $H R Q$ according to the diftance that I would haue berweene the axis of the ftyle and the fubftylar then will the ftyle bee parallell to the plane $\mathrm{P}^{2} \mathrm{~g}$. $128 . \operatorname{lin} .1$.

Here then the ftyle will be parallell to the plane, and the houre-lines paralell one to the other, as in the meridian and direct polar planes. Yer that we may better know how to draw the houre-lines, and where to place the ityle, we are to confider.

* The arke of the plane betweene tha barizon and the pole.

In a meridian plane the arke betweene the horizon and the pole which reprefents the arke betweene the horizon and the houre-lines, is alwayes equall to the latitude of the place 3 in adirect polarit is anarke of 90 gr ; in thefe declining polars it is greater then thelatitude, and yet leff then 90 gr . This arke is here reprefented by $P Q$ and may be knowne by refoluing the triangle $Q<\mathcal{R} P$ or $P R^{\prime} Z$.

As the fine of $g 0 \mathrm{gr}$.
to the cofine of the latitude:
So the fine of the declination
to the cofine of the arke betweene the horizon and the Pole.

Extend the compaffes from the fine of 90 gr . vnto the fine of 38 gr .30 m . the complement of the latitude, the fame extent will reach from the fine of 65 gr .40 m . the declination propofed, vnto the fine of 34 gr .34 m . whofe complement is 55 gr .26 m . the arke of the plane required betweene the hosizon and the pole.

Or as the cofine of inclination to the horizon, to the fine of 90 gr .
So the cotangent of the declination to the angent of the arke betweene the horizon aind the pole.

And fo extending the compaffes from the fine of 18 gr .9 m. the complement of the inclination to the tangent of 24 gr . 20 m . the complement of the declination the fame extent doth reach from the fine of 90 gr . vnto the tangent of $55 . \mathrm{gr}$. 26 m . And fuch is $Q P$ the arke of the plane betweene the horizon and the pole, the meafure of the angle $Q C P$ betweene the horizontall line and the fubltylar.

2 The inclination of the meridian of the plane, to the meridian of the place.

The fubitylar in a direa polar plane is alwaies the fame with the houre of 12 . in a meridian plane it is the fame with the houre-line of 6: in thefe declining polars it muft be placed betweene 12 and 6 , according to the inclination of the metidian of the plane to the meridian of the place, which is
here reprefented by $M P Z$ the complement of the angle $R P Z$, and thas knowne.

> As the fine of 90 gr . to the fine of the latitude:
> So the tangent of the declination of the plane, to the tangent of the inclination of meridians.

Extend the compafies from the fine of 90 gr . to the fine of $5 \mathrm{Igr.j0m}$. the latirude of the place, the fame extent will reach from the tangent of 65 gr .40 m . the declination propofed, mpto the tangent of 60 gr . and luch is the angle of inclination betweene the meridian of the place and the proper merid:an of the plane, which relolued into time doth make toure hourcs; and fo the furoftylar muft here be placed vpon the houre of 8 in the morning.

This angle being knowne, the reft of the angle's at the pole are catily gathered. For it the houre of I 2 be 60 gr . diItant from the meridian of the plane, the houre of x will be 75 gr and the houre of II, will be 45 gr . diftant, and the reft of the houres, asin the Table following. Then comming to the plane.

I Id aw an occult horizontall line $H Q$, wherein I make choice of a center H, and defcribe an occult circle for the horizon of the plane.

2 I find a chord of 55 gr .26 m . and infcribe it into this circle, from $Q_{\text {vnro }} \mathcal{B}$, according to the fituation of the plane; So the line $H \mathcal{B}$ thall be the meridian of the plane, and there, fore the lublityiar : and the line $A C$ crolfing it at right angles, fhall be the equator.
3 I confider the length of the plane, and how many houres I am to draw vpon it, that fo I may proportion the height of the ftyle; and I finde by the fundamentall diagram and the former table, that it will containe all the houres from Sun rifing vntill it be paft 1 afternoone: and therefore the meridian of the plane falling on the houre of 8 in the morning, there will be foure houres on the one fide, and fiuc on height of the ftyle aboue the fubltylar muft be equall to the diftance of the third houre from the fubfylar, os about \ddagger. of the fourth houre, or little more then $\frac{1}{4}$. of the fift houre, and thereupon I allow the height of this ityle to be equall to $C B$, which you may fuppofe to be ten inches.

4 Becaufe the equator $A C$ is a tangent line in refpect of the Radius $\mathcal{B} C$, and the parts thereof are fuch as belong to the angles betweene the meridian of the plane and the houre-lines, which angles are fet downe in the table follow. ing, I may finde the length of each feaerall tangent in this is manner.

As the tangent of 45 gr .
 is to the tangent or the houre: So the parts or the Radius, tothe parts of the tangenc lipe.

The angle $A B C$ betweene the meridian of the plane and the houre of $\mathbf{1 2}$, the neridall of the piace is 60 gr . in the tormer table, and the Radius $B C$ is luppolid to be ten inches; whercupon I extend the compalfes from the tangenc of 45 gr . vato the tangent of 60 . gro the fame extent will rach tiom ro an the line of numbers, vito 17.32 , which fhewes the length of che cangent $A C$ betweene the fubityiar and the houre of ro, to be 17.32 cent. The like reafon holds for the reft of the hourts.

5 Thefe lengiths being thus found and fet downe in hi table, I take our 17 inches 32 cent. and prick them in the equaror trom C vito A for the houre of 12, aid 37 inches 32 cent. and prick them downe for the houre of I . And to the raft of the hourepoints.

6 This done, if I draw right lines through each of thefe points, croffing the equator at right angles, they fhall be the houre-lines required: andit 1 fer the ftyleouer the fubtylar, fo as the edge of it may be parallel to the plane, and the heiglit ot it be cen inches equali to the former Radius B C, it thail reprefent the axis of che world, and be truly placed for cafting of the fhadow vpon the houre-lines in this declinitf polar plane.

CHAP. X.

To draw the boure-lines in a declining inclining plane.

IF a plane fhall decline from the prime verticall, and inclire to the horizon, and yer not lie cuen with the poles of the world, it is then called a decliniag inclining plane.

Of thefe there are feuerall forts; for the inclination being Northward, the plane may fall betweene the horizon and the pole, as the circle B $M D$ in the fundamentall Diagram ; or betweene the zenith and the pole, as BFD: or the inclination may be Southward, and fo be reprefented by B K D, it mayalfo fall either below the interfection of the meridian and the equator, or aboue it; and each of thefe haue two faces, the vpper toward the zenith, and the lower toward the nadir ; wherein hauing the latitude of the place with the declination and inclination of the plane, we are farther to confider,
a Thearke of the meridian betweene the pole and the plane.
2 The inclination of the plane to the meridian.
3 The arke of the plane betweene the horizon and the me-ridian-
4 The angle of inclination betweene both meridians.
5 The height of the pole aboue the plane.
6 The diftance of the fubltylar from the meridian.
7 The diftances of each houreline from the fubltylar.

And all thefe feuen may be reprefented in the fundamentall diagram, as in this example.
In our latitude of 51 gr .30 m . a plane is propofed, declining from the verticall 24 gr .20 m and inclining Northward $36 g r$. the vpper face lying open to the Southweft, the lower to the Northeaft. If I number thefe 24 gr .20 m , in the horizon from E to B,and there draw the line $B C D$, it fhall reprefent the horizontall line of the plane : then croffing it at right angles with the plane $H Z Q$ drawne through the zenith, I number 36 gr . for the inclination from $2 \mathrm{vnto} M$, and there draw the circle BM D , crofing the meridian in the point $a_{\text {; }}$ this circle fo drawne thall reprefent the plane propofed; and Gecaufe it doth not paffe through the pole, is therefore no polar, but an ordinary declining inclining plane.

1 The arke of the meridian of the place betweene the pole and the plane, is here reprefented by $\mathcal{P} a$, and may be found by refoluing the triangle $\mathcal{D} \mathcal{N}$, wherein the angle at 2 Kis knowne to be a right angle, the angle at D is the angle of inclination, the fide D N the complement of the declination, which being knowne,

As the fine of 90 gr .

to the cofine of declination:
So the tangent of inclination to the horizon,
to the tangent of the meridian betweene the horizon - and the plaine.

Extend the compaffes from the fine of 90 gr : vnto the fine of 65 gr .40 m. the complement of the declination, the fame extent will reach from the tangent of 36 gr : the inclination propofed, vnto the tangent of 33 gr .30 m . and fuch is the arke of the meridian $N a$, between the horizon and the plane. This arke 2 a being compared with the arke $\mathcal{N} P$, which is the elevation of the pole aboue the horizon, and is here fuppofed to be 51 gr .30 m . the difference K - commeth to 18 . $^{\circ}$ $g r$. and fuch is the of the meridian required betweene the pole and the plane.

2 The inclination of the plane to the meridian is here re" prelented by the angle $\mathcal{N a D}$, and nay be found by, that which we haus giuen in the former trangle $D N a$. For.

2ve As the fine of 90 gr.
-isue to the fane of the declination from the verticall: So the fine of inclination to the horizon,
to the cofine ot inclination of the plane to the meridian.

Extend the comoffes from the fine of 90 gr . vnto the fine of 24 gr .20 m . the declination of the plane, the lame extent will reach from the fine 36 gr . the inclination given, vnto the cofine of 76 gr . And fuch is \mathcal{N} a D the angle of inclination betweene the plane $D a_{2}$ and $N a$, the meridian of the place. Or

As the fine of the arke of the meridian betweene the hoi izon and che plane, is to the fine of 90 gr .
So the cotangent of the declination
to the tangent of incination of the plane to the meridian.

Extend the compaffes from the fine of 33 gr .30 m . the arke of the meridian betweene the horizon and the plane, vnto the fine of 90 gr . the fame extent will rach from the taugent of 65 gr .4 cm . the complument of the declination vnto the tangent of 79 gr . And fuch is the inclination of the planeto the meridian, the fame as before.

3 The arke of the plane between the horizon and the meridian, is he re repreten ed by D a, and may allo be found by that which we have giuen in the former triangle $\mathcal{D} \mathcal{N} \mathbb{a}$.

As the coline of irclination to the horizon is to the fine of 90 gr .

So the cotangent of the d clination
to the tangent of the arke of the plane from the ho: rizon to the meridian.

Extend the compaffes from the fine of 54 gr . the complement of the inclination of the plane to the horizon, vnto the fine of gogr. the frme extent will reach from the tangent of 65 gr .40 m . the complement of the declination, vnto the tangent of 69 gr .54 m . Aud fuch is \mathcal{D} a the arke of the plane, betweene che horizois and the meridian of the place.

4 The inclination of meridians is here reprefented by the angle $a P 6$. For hauing drawne the proper meridian $b P k$, or let down a perpendicular $P 6$ from the pole voto the plane, this perpendicular fhall be the meridian of the plane; and we fhall haue another triangle $a b P$, wherein the angle at b is a right angle, becaule of the perpendicular, the angle at a is the is clinarion ot the plane to the meridian of the place, and the fide P a,is the arke of the meridian betweene the pole and the plane, which being knowne,

As the cofine of the arke of the meridian between the. pole and the plane is to the fine of $y 0 \mathrm{gr}$.
So the cotangent of the inclination of the piane to the meridian,
to the tangent of inclination of the meridian of the plane, to the meridian of the place.

Extend the compaffes from the fime of $\mathbf{7 2} \mathrm{gr}$. the compliment of the arke $P_{a} a$, betweene the pole and the parte, , pnto the fine of 90 gr . the lame extent will reach from the tangent of 14 gr . the complement of the iuclination of the plane to the meridian, uno the tangent of 14 gr .41 m . And fuch is the angle $a P$ Pof inclination betweene the meridian of the place and the proper me:idian of the plane, which retolued into time, doth makeabout 59 minutes, and fo the fubftylar malt here be placed neere rhe houre of I_{2} after noone.

5 The height of the pole aboue the plane is here repre: fented by P 6 , the arke of the proper meridian betweene the poleand the plane, and may be found by that which we haue giuen in the triangle a 6 P. For

> As for the fine of 90 gr .
> to the fine of the meridian of the prace betweene the pole and the plane :

So the fine of inclination of the plane to the merldian, to the fine of the height of the pole aboue the plane.

Extend the compaifes from the fine of 90 gr . vnto the fine of 18 gr . the arke $\mathrm{P} a$ of the meridian of the place from the pole to the plane, the fame extent will reach from the fine of o a P the inclination of the plane to the meridian of the place, vnto the fine of 17 gr .26 m . Or.

> As the fine of $90 . \mathrm{gr}$. to the cofine of inclination of meridians:
> So the tangent of the meridian of the place betweene the pole and the plane,
> to the tangent of the height of the pole aboue the plane.

Extend the compaffes from the fine of 90 gr . vnto the fine of 75 gr . 19 m . the complement of $a P 6$ the inclination of the two meridians, the fame extent will reach from the tangent of 18 gr . the arke P of the generall meridian' betweene the pole and the plane, vnto the tangent of 7 gr .26 m . And fuch is $P 6$ the height of the pole aboue the plane; and fuch muft be the height of the ftyle aboue the fubftylar.

6 This diftance of the fubftylar from the meritidian of the place, is here reprefented by a b the arke of the plane between the two meridians, and may be found by that which we had giuen at the firft in the former triangle a 6 P. For

As the fine of 90 gr .
to the cofine of the inclination of the plane to the meridian:
So the tangent of the meridian of the place betweeme the pole and the plane,
vnto the tangent of the fubstylar from the meridian of the place.

Extend the compaffes from the fine of 90 gr . vato the fine of 14 gr . the complement of $6 a P$, the inclination of the plane to the meridian, the fame extent will reach from the tangent of 18 $g r$. the arke of the generall meridian betweene the pole and the plane, ,vnto the tangent of 4 gr .30 ms . And fuch is the arke of the plane betweene the two meridiaas; and fuch mult be the diftance from the houre of 12 to the fubftylar.

7 The diftances of the houre-lines from the fubftylar, are here alfo reprefented by thofe arks of the plane, which are intercepted between the proper median and the houre-circles. For in there triangles the angle at b betweene the plane and the proper meridian is aright angle, the fide $P b$ is the height of the pole aboue the plane, and then the angles at the pole betweene the proper meridian and the houre-circles being

Latitude 5130 Declina. ${ }^{2} 420$. Inclin. N. 360.		
Merid. 6954. ff. Merid, 1441 .		
Alt. ftyli. 1726.		
ift. fubit. 430.		
	Ang.Po	
)	
	30 I9	

As the fine of 90 gr . to the fine of the pole aboue the plane: So the tangent of the angle at the pole, to the tangent of the koure-line from the fubstylar.

Extend the compaffes from the fine of 90 gr . vnto the fine of ${ }^{7} 7 \mathrm{gr} .26 \mathrm{~m}$. the height of the pole aboue the plane, the

fame extent will reach from the tangent of 14 gr .4 Im . the angle at the pole belonging to the houre of 12 , vnto the tanigent of 4 gr .30 m . for the arke of the plane betweene the fubfivlar and the houre of 12 ; and from the tangent of 29 gr .4 r ms. vnto the tangent of 9 gr .4 Im . for the houre of II , and fo_{o} for the reft of the arks or the plane between the fublty lar and the houre-lines, as in the former table.

Thele arkes being thus found, will ferue for the drawing of the houre-lines on either fide of the plane: but fuppofing
it to be the upper fide, I corfider how the lines doefall in the fundamentall diagram, and accordingly
r 1 draw an occult horizontall line $D D$, wherein I make choice of the center C, ald thence draw anoccult circle for the brorizon of the p ane.

2 I finde a chord of 69 gr . 54. m. the arke of the plane betweene the horizon and the meridian, and defcribe it into this circle from D vnto a, and there draw the line C afor the houre of 12 .

3 I finde a chord of 4 gr .30 m . the arke of the plane betweene the two mendians, and inferibe it into this circle from a vnto 6 , and there draw the line $C b$ for the fublty lar.

4 The fubftylar being drawne, I may infcribe the chords of the arkes of the plane from the fut fylar, and draw the houre-lines, and fer vp che ftyle as in the former planes.

A fecondexample of a Plane falling betwecne the poleand the zenith.

In like maner if in our latitude a plane be propofed declining trom the verticall $24 g r .20 \mathrm{~m}$. as before, but inclining to the horizon 75 gr .40 m . Northward, the vpper face being open to the Scuthweft, the lower to the Northeaft, this plane Shall be here repretented by the circle BF D, crofing the meridian in the point d, betweene the pole and the zenith, and the proper meridian of this plane, by the perpendicular arke $p e$.

Thenin this triangle $D \mathbf{N} d$ knowing the fide $D N$ the compiement of the declination, with the angle of inclination to the horizon at D , and the right angle at N , thete former Canons will giue $\mathcal{N} d$ the arke of the meridian betweene the horizon and the plane to be 74 gr .20 m ; and therefore P d the arke of the meridian betweene the pole ard the plane will be $22 \mathrm{gr} . j \mathrm{mom}$. the angle $D d \mathcal{N}$ of the inclination of the plane to the meridian, will bee found to be 66 gr .29 m .

$$
\mathrm{Z} \mathrm{z} \text { and }
$$ meridian 83 gr .36 m .

Againe, in the triangle $P \subset d$ knowing the fide $P d$ the arke of the meridian betweene the po'e and the plane, with the angle of incination to the meridian at d, and the right angle at e, the angle $d P e$ of the melination of the two merio. dians will be found to be 25 gr .17 m . and P e the heighe of the pole aboue the plane to be 20 gr .50 mz , and $d e$ the diftance of the fubitylar trom the meridian about 9 gr .32 m .

Laftly, hauting found the height of the pole abcue the plane, and gathered the angles at the pole, the arks of the plane from the fublylar to the hourelines will be as in this table.

This done, if we confider how the lines doe fall in the fundamentall d agram, wee may there fee how the North pole is eleuated aboue the lower face. and the South pole aboue the vpper face of the plane, and accordngly make choice of a center, draw the horizoncall, the meridian, the fubftylar, and the hourelines, and fet vp the Ityle as in the other planes.

> A Third example of a Plane inclising to the Southmard.

If in our latitude a plane were propofed declining from the verticall 24 gr .20 m . as before , but inclining to the horizon 14 gr .20 m . Southward, the vpper face being open to the Northeaft, the lower to the Southweft , this plane fhall be here reprefented by the circle $\mathcal{B} K D$ croffing the meridian in the point f betweene the xquator and the horizon, and the proper meridian of this plane by the perpendicular
dicular arke $P{ }_{g}$ let downe from the pole to the plane, neere the houre of is, at the North part of the horizon, as may partly appeare by the neereft extent of the compafles, if the circle $\mathcal{B} K \mathcal{D}$ were drawne round; and the two letters f and g fupplied.

Then in the triangle $\mathcal{B} S f$, knowing the fide \mathcal{B}, the complement of the declination, with the angle of inclination to the horizon at B, and the right angle at S, we may find $S f$ the arke of the meridian betwsene the horizon and the plane to be 13 gr .6 m . And therefore P f che ar, e of the meridian betweene the po'e and the plane to the Southward 115 gr .24 m 。 bur 64 gr .36 23. to the Northward, the angle $\mathcal{B} f S$ or $\mathcal{D} f \mathcal{K}$ of the inclination of the plane to the meridian, will bee found 84 gr .9 m ; and $B f$ or $D f$ the arke of the plaue between the horizon and the meridian 66 gr .20 m .

Againe, in the triangle $P g f$ knowing the ficie $P f$ the a ke of the meridian be weene the pole afd the plane, with the angle of inclination to the meridian at f, and the s ight angle at g, the angle $f P g$ of tre inclinarion of the two me idians will be found to be 13° gr. $7^{2} \mathrm{~m}$ a ad $P g$ the height of the pole aboue the plane, about 64 gr . and $f \mathrm{~g}$ the diftance of the tubftylar from the meridian 12 gr .8 m .
Having found the height of the pole aboue the plane, and gathered the angles at the pote, the arkes of the plane from the fubftylar to the houre-lines will be found as in this table.

$\left\lvert\, \begin{aligned} & \text { Latitude } \\ & \text { Declination } \\ & \text { Inclination } \end{aligned}\right.$	$n \left\lvert\, \begin{array}{lll} 51 & 30 \\ 24 & 20 \\ 14 & 20 \end{array}\right.$
diff. merid.	d. 1327
dift. futffy.	. 128
Alt. Styl.	$64 \quad 0$
Alt. merid.	d. 66
工 Aug. Po.	Arc.
4 Gr. M. ${ }^{\text {c }}$	Gr.
67533	75
76133	58.56
84633	4330
231.332	2855
1016331	1458
11133	${ }_{5}{ }^{25}$
Merid S	Subftyl
1213271	12
$1 \begin{array}{llllll}128 & 27\end{array}$	25.57
24327	4023
358275	5538
4732717	7 II 4
588278	8815

Thisdone, if we confider how the lines doe fall in the fundamentall diagram, we may there fee how the North pole is eleuated aboue the vpper face, and dingly make choice of the center, draw the horizontall, the meridian, the fubfylar, and the houre-lines, and fet vp the ftyle as in the former planes.

CHAP. XI.

To defcribe the Tropiques and other circles of declination in an equinoctiall Plane.

SVch circles as are parallell to the æquinoctiall, and yet fall within the tropiques, may be defcribed on any plane by help of thefelines of proportion, but after a different maner, according as the fyle fhall be either perpendicular, orpat allell to the plane, or cut the plane with oblique angles.

In an æquinoctiall plane where the ftyle is perdendicular to the plane, the tropiques and other circles of declination will bee perfect circles: wherefore confider the length of the ftyle in inches and parts, and the declination of the circle which you intend to defcribe in degrees and minutes, the groportion will hold.

As the tangent of 45 gr . to the length of the fyle :
So the co:angent of the parallell, to the femidiameter of his circle.

Suppore the length of the ftyle aboue the piane to bee so inches, and that it were required to finde the femidiameter of the tropique, whofe declination is knowne to be 23 gr .30 ms: extend the compaffes from, the tangent of 45 gr . vnto the tangent ot 66 gr . 30 m . the fame extent will reach in the line of numbers from 10 vnto 23 , which thewes the femidiameter of the tropique to be 23 inches. Soif the declination bee 29 gr . the femidiameter will bee 27 inches 47 . cent; it is

gr. then 37.32 ; if 10 gr . then 56.71 ; if $5 . \mathrm{gr}$. then 114.305 . and $f o$ in the $r \in f t$.

Or ifit were rqquired to proportion the fyle to the plane,
As the tangent of 45 gr . to the tangent of the declination:
So the femidiameter of the plane, to the length of the fiyle.
As if the femidiameter of the greatef parallell vpor the plane were but fix inches, and that parallell fhould be the fift degree of diclinarion : extend the compones from the taugent of $45 . \mathrm{gr}$. vinto the tangent of g gr . the fame extent will reach in the line of numbers from 6.00 vnto about 0.53 ,
which fhewes that the length of the fyle mult be 53 parts of an meh diuided into 100 ; then the length of the fyle being knowne, the 1emidiameter of the othercircles will be found as before.

1 begin hire with the fift parallell, and thence proceed vnto the tropique, becaufe the fhadow of the reft neere the xquinoctiall, would be ouerlong, and the xqunoctialis felfe caunor bedefribed. The parallels of North declination are to be fet on the North face, and the paralleis of Sourh declination on the South face of the plane. Neither need thete paraliels to be drawne in full circles, but onely to the horizontall line, which thall be defcribed in Cap. xviij.

Hauing by thefe meanes fet vp the ftyle to his true height, and drawne the circles of declination, if we chail place the plane fo as it fhall make an angle with the horizon equall to the complement of the latitude, and then turne it vantll thetop of the ftyle caft the fhadow vpon the parallel of decination belonging to the time, the mend an of the plane will Shew the meridian of the place, and the fhadow or the ftyle the houre of the day, without the helpe of a magneticall needle.

CHA.P. XII.

To defcribe the Tropiques and other circles of declination in a polar Plane.

IN all polar planes, whether they be parallel to the meridian or to the circles of the houre of σ, or otherwife declining, the xquinoctiall will be a right line, but the tropiques and other circles of declination will be fections hyperbolicall, and be thus defcribed.

Confider the length of the ftyle, the declination of the paraile, and the angle at the pole betwerne the fubitylar and the houre-line, whereon you meane to defcribe the paraltel.

If you would find where the parallels doe croffe the fub. Rylar ;

As the tangent of 45 gr .
to the tangent of declination :
So is the length of the fyle,
to the diftance of the parallel from the xquinoctiall:

As in the example of the polar plane, where the length of the fyle $\mathcal{B} C$ was found to be I inch, 6 I cent. if yon defire to know the diffance betweene the xquinoctiall and the tropigue vpon the fubftylar line: extend the compaffes from the tangent of 45 gr . vito the tangent of 23 gr .30 m . the fame extent will reach in the line of numbers from 1,61 vnto 0 , 70 ; and cherefore the diffance reguired is 70 parts of an inch diuided into 100. The like realon holdeth for all othes paralless of declination croffing the fubftylar.

But if you would finde where the parallels doe croffe any other of the houre-lines, firf find the diftance betweene the betweene the xguinoctall and the parallel, both thefe may be rep refented in this maner.

On the center \mathcal{B} and any femidiameter BD defribe an occult arke of a circle, and therein infribe a chord of 23 gr . 30 m . form D vnte T, with fuch orher intermediat declinations as you intend to defcribe on the plane, fo the line $B D$ Thail be the rquator, and BT the tropigue, and the other intermediate lines the lines of declination.

That done, confider your plane r. which for example may be either the miridian or the declining polar plane, wherein hauing drawne both the xquator, and the houre-lines as before, firt take out the height of the ftyle, and prick that downe in this æguator from B vnto C; then take out all the diftances bet weene \mathcal{B} the rop. of the fyle and the feucrall points wherein the houre-lines doe croffe the xquator, transferre them into this aquator $B D$ from the center B, and at the termes of thefe diftances'erect lines perpendicular to the xquator, croffing the lines of declination, and note them with the number of the houre from whence they were taken: fo thefe perpendiculars fhall reprefent thofe houre lines, and the feuerall difrances betweene the aquator and the lines of declination, thall giue the like diftauces betweene the aquator and the pa* rallels of declination vpon your plane. Vpon this ground it followeth.

To finde the diftance betweene the axis and

 the hourc-lises.As the cofine of the houre from the fubdylar; is to the fine of 90 gr .
So the length of the ftyle,
to the diftance between the axis and the houre-line:

As if in the former example of the meridian plane, where BC the height of the fyle is fuppofed to be to inches, it were required to find the diftance between B to the top of the ftyle and the point wherein the houre of II in the morning Aaa doth
doth croffe the xquator, which is here reprefented by B 5, becaufe it is the fift houre from the fubitylar, whoie angle at the pole is 75 gr . Extend the compaifes from the fine of 15 gr . the complement of the fift houre from the fubftylar, vnto the fine of 90 gr . the fame extent will reach from 10.00 in the line of numbers vito 38.64 ; and therefore the diftance B 5 betweene the axis and the houre-line, is 3δ inches and 64 cent. and may be called the fecant of the houre. Then in the rectangle $\mathrm{B}_{5} / \mathrm{T}_{2}$, hating the fide B 5; and the angle of declination at B .

To finde ibe diftance betweene the equinoctiall axd the paraliell.

As the tangent of 45 gr . to the tangent of the declination:
So the diftance betweene the axis and the houre-line, to the diftance betweene the xquinoctiall and the parallel.

Extend the compafles from the tangent of 45 gr. vnto the tangent of 23 gr .30 m . the declination of the tropique, fo the fame extent will reach in the line of numbers from 38. 64. the diftance betweene the axis and the fift hourc-line vnto 16.80 ; and therefore the diftance is 16 inches and 80 . cent. The like reafou hoideth for all the reft, which may be gathered and fet downe in fuch a Table as this which followeth.

Wherein I haue fet downe thefe difances for feuerall declimations, for 11 gr .30 m . for 16 gr .55 mm . for 20 gr .12 m . for 21 gr .4 T m . and for the declination of the Tropique 23 gr. 30 m , which may be applted to the like declinations in all meridian and direct polar planes.

As inthe former example of the polar plane, where B C the height of the ftyle is found to be 1 inch σ_{1} cent. if it were required to find the diftance betweene B the top of the fyle
and the points wherein the houre-lines of 7 in the morning or 5 after noone, doe croffe the xquator (which diftances, I called the fecants of thofe houres,) either yon may extend the compaffes from the fine of 15 gr . the complement of the houre from the fubitylar vato the fine of 90 gr , fo the fame
 of the fyle, vo.o 6. 21, according to the former Canon. Or elle you may make vfe of the tormer 「able, extending the compatfes in the line of numbers from 10,00 the length of the tyle in the Table, vnto 1.6 the length of the fyle belonging to your plane, fo the fame extent fhall reach from $3^{8 .}$ 64 the lecant in the Table, vnto 6.21 , and fuch is your fecant required, the diftance betweene the top of the fyle and the point of interfection, wherein the fift houre line from the fubltylar doth croffe the zquator.

Againe, the fame extent will reach from 16.80 the di-. ftance in the Table belonging to the fift houre-line betweene the xequatour and the parallel of 23 gr .30 m . declipation, vnto 2. 70 for the the like dittance vpon your plane, and fo for the ref, which may be gathered and let downe in a Table.

That done, and the xquator drawne as before, if you would draw the tropiques in the polar plane, looke into the rable, and take 701 cest. out of the line of inches, and pricke them downe in the fubhylar on either fiderof the aquatour, and for 2 cens. on the firft houre, and 80 on the fecond houre, and 2 inches 70 cent. on the fift houre from the fubitylar, and the reft of thefe diftances on their feuer all houre-lines, and then draw a crooked line through all thefe points, fo as it makes no ang!es, the line fo drawne thall bee the Tropike requirred. Inlike maner you raay draw any other parallell of declination on.

CHAP.

CHAP. XIII.

To defcribe the Tropiques and otber circles of declination in fuch a Plane as is neither equinoctiall nor polar.

IN Planes neither xquinoctiall nor polar, the x guatour will bea right line, the tropiques and other parallels of declination will bee conicall fections, fome of them parabolicall, fome ellipticall, but the moft of them hyperbolicall.

To finde the puints of interfection of thefe parallels with the houre-lines, wee are to confider, firt the length of the axis of the ftyle in inches and parts of inches; fecondly the height of the ftyle aboue the plane ; thirdly the angles at the pole betweene the proper meridian atid the houre-circles. Thefe being knowne, will help vs to find, firft the angle betweene the axis and the houre-lines on the plane; and then the diftance betweene the center and the parallels ; both thefe: may be reprefented in this maner.

Let the triangle $A B C$ be made equall to the ftyle belonging to your plane, $A C$ the fubtylar, $B C$ the axis of the ftyle; A B the length of the ftyle perpendicular to the plane. Then hauing drawne the line $B D$ perpendicular to the axis on the center B, and any femidiameter B D defcribe an occult arke of a circle, and therein infcribe a chord of 23 gr .30 m . from D. vnto T, on either fide of the line, with fuch other intermediate declina:ions as you intend to defcribe on the plane, fo the perpendicular BD fhall be the æquator, and BT the tropiques, and the other intermediate lines the parallels of declination. Wherefore you may take out the diftance $C r$ from the center to the xquator, and pricke it downe on the fubftylar of your plane from the center at C vnto r, fo the line drawne through
through r perpendicular to your fubfylar, fhall be the aguator ot your plane.

That done, take the diftance of each houre-line betweene the center aud the equator of your plane, and pricke them downe in the xquator of this figure, from the senter at C, noting the place, where they crofle the xquator, with the number belonging to the houre, and drawing the houre-lines from C through the lines of declination.

Or hauing the Sector you may draw an occult line $C E$ perpendicular to the axis B C, and therein pricke downe the tangent of the height of the ftyle aboue the plane, from C vnto E. Then draw the line $E F$ parallell to the axis, croffing the fubftylar produced in the point F, this line $E F$ will bee the line of fines vponthe Sector s and theerein you may pricke downe the fines of the complement of the angles at the pole from E toward F, and draw the houre-lines by thofe points through the lines of declination, fo the angles at C betweene the axis B C and thofe houre-lines, thall be the angles betweene the axis of your fyle and the houre-lines on your plane, and the feuerall diftances betweene the poist C and the lines of declination, fhall give you the like diftances betweene the center, and the parallels of declination vpon the houre-lines in your plane. Vpon this ground it followeth,

1 Io proportion the fifle onto the plane.

Confider the height of the ftyle aboue the plane, and the: length of the fubftylar betweene the center and the place which you intend for the trodique. If it bee the tropique which is fartheft from the center, adde in 3 gr .30 m : if the neerer tropique, adde $66 \mathrm{gr} .30, \mathrm{~m}$, vnto the height of the ftyle, the remainder vnto $x 80 \mathrm{gr}$. Thall giue you the altitude. of the Sunne aboue aboue the plane when he commeth to that tropique. As in our latitude the height of the fyle aboue an horizontall plane is 5 gr .30 m . adde vnto this I 13 gr .30 m . the fumme is 16 s gr . Which being taken out of 180 gr . the remainder

192 remainder will be 15 gr . and fuch is the altiude of the Sunne atoue this plane when he commeth to be in the Winter tropique: but it you adde 60 gr .30 m . vnto 5 g gr .30 m . the semainder to X 80 gr . will be 62 ggr . And fuch is the alutude of the Sunin the Summer I ropique. Then.

As the fire of 66 gr .30 m . to the time of the Suns altitude: So the length of the fubitylar line, to the ength of the axis of the ftyle.

As in the firft examples of the declining verticall, where the height of the fty!e was found to be 34 gr .33 m . and is here reprefented before pag. 150. by the angle $\mathcal{B} C$ 玉o adde to this height 113 gr .30 m . for the angle C ' B, the fum will be 148 gr .3 m . and the remainder to 180 gr . will be 3 Igr .57 m. and fuch is the angle \mathcal{B} © C of the altitude of the sun $a=$ boue the plane, when he cometh to be in the tropique of \Im, which is here the fartheft tropique from the center.

Then fuppofing the length of the fubllylar line betweene the center and the place which is fit for the fartheft tropique to be about 2 t inches, extend the compafles from the fine of 66 gr .30 m . vato the fine of $3 \pm \mathrm{gr} .57 \mathrm{~m}$. the fame cxtent will reach in the line of numbers from 21 vnto 12 . II , and fo the length of the axis of the ftyle fhould be 12 inch. II cent. Or it may fuffice to make it iuft 12 inches, as a more eafie ground for the reft of the worke.

But if it were required to proportion the ftyle vnto the plane, fo asit may caft the fhadow to the full length of the fubftylarline at all times of the yeare, you may then confider the San in the tropique, which is to be fet neareft vnto the center, and adde 66 gr .30 m . vnto 34 gr .33 mm . O the remainder vnto 180 gr . will be 78 gr .57 m . And if you extend the compaffes from the fine of 66 gr .30 m . vno the fi e of 78 gr .57 m . the fame extent will reach in the line of numbers. from 21 vnto 22.47 for the length of the axis of the ftyle.

2 Hauing the length of the axis, and the height of the

 Ayle aboue the plane, to find the length of: the fides of ibe fyle.The fyle of a plane neither æquinoctiall nor polar, may be: cither a fmall rod of iron fet parallell to the axis of the world, or perpendicular to the plane, or elfe a thin plare of iron or braffe made in forme of a rectangle triangle $B A C$, with the bafe $\mathcal{B} C$ parallell to the axis of the world, the fide $A B$ perpendicular to the plane, and the fide $A C$ the fame with the fubfylar line, wherein knowing B C and the angle $B A C$, Bfb?

> As the fine of 90 gr . to the lengrt of the axis : So the finc of the height of the ftyle, to the length of the perpendicular fide : And fo the cofine of the h ighr of the fyle, to the length of the fubftylar fide.

Thus in the former example, the length of the axis being fuppofed to be I inches, and the height of the ftyle $34 \mathrm{gr} \cdot 33$ m. Extend the compaffes from the fine of 90 gr . (or elfe from the fine of 5 gr .45 m .) vato 12 in the line of numbers, the fame extent will reach from the fine of 34 gr .033 mi vnto 6.80 in the line of numbers for the length of the perpendicular fide, and from the fine of 55 gr .27 m . vnto 9.88 for the length of the fubftylar fide.

3 Tofind the dijtance betweene the center and the aquator upon the fubftylar line.

This is here reprefented by C, r, and may be found by re:, foluing the rectangle triangle $C B r$.

As the cofine of the height of the ftyle, is to the fine of $g 0 \mathrm{gr}$.
So the length of the axis;
to the diftance of the æquator from the center.
Extend the compaffes from the fine of 55 gr .27 m . vnto the fine of 90 gr . the fame extent will reach in the line of numbers from 12 vnto 14.57. Wherefore it you take 14 inch. 57 cent. and pricking them downe on your fubftylar line from C vnto r, draw a line through r, croffing the fubftylar at right angles, the line fo drawne fhall be the aquator.
\& To find the angles contained betweene the aquatour and the boure-lines upon your plane.

Thele angles made by $B r$ and the houre-lines, are complements oi thofe which are at C, betweene $B C$ the axis and thore feuerall houre-lines, and depend vpon the angles at the pole, berweene the proper meridian and the houre-circles.

> As the fine of 90 gr . to the cofine of the angle at the pole :
> So the cotangent of the height of the fyle, to the tangent of the angle betweene the aquator and. the houre-line.

In our example the height of the fyle is $34 \mathrm{gr}^{3} 33 \mathrm{mo}$ and. the proper meridian fal!erh to be the lame with the circle of the iecad houre af er noone, whereupon the angle at the pole, berwene t is proper meridian, and the circles of the houre of I on the one fide, and 3 on the other fide, will bee 15 gr ; fo betwe ene this meridian and the houre-circles of I 2 . and 4 , the angle will be 30 gr .8 cc . as in the Table.

If then it be required to find the Ang'e"; which the houre" line of 4 after noone doth make with the plane of the aquaBbb 2
ror, line C_{4} and the line B_{4}, drawne from the top of the fyle wnto the interlection of the houre-line of 4 with the xquator.

Extend the compaffes from the fime of $g 0 \mathrm{gr}$. vnto the fine of 60 gr . the complement of the angle at the pole, the fame extent will reach from the tangent of 55 gr .27 m . the complement of the height of the pole, voto the tangent of $5 \mathrm{I} \mathrm{gr}_{0}$. 3om. and fuch is the angle $\mathrm{C}_{4} \mathrm{~B}$ in the diagram Pag. 150.

Or in crofle-worke, if it were required to finde the angle C $9 B$, looke into the Table for the houre of 9 , and there you thall find the angle at the pole to be 75 gr ; and if you extend the compafies from the fine of 90 gr . vnto the rangent of 55 gr .27 m . the fame extent will reach from the fine of $\mathrm{I}_{5} \mathrm{gr}$. the complement of 75 gr . vnto the tangent of 20 gr .36 m . and fuch is the angle C 9 B , made at the x quator betweene the line B 9 drawne from the top of the fyle, and the houreline C 9 drawne from the center. The like reafon holdeth for the reft, which may be found and fet downe in a table: then may you either draw thefe angles at \mathcal{C} in the former figure more perfectly, and thence finifh your worke, or elfe proceed

5 To finde the diftance betweene the center and the parallels of dechination.

The diftances betweene the center and the parallels of declination, may be found by refoluing the triangles made by the axis $\mathcal{B} C$, the lines of declination, and the houre-lines. For hauing the angles at the xquator, and knowing the declination of the parallell, if the parallell thall fall betweene the x quator and the center, adde the declination vnto the angle at the xquator; or if it hall fall without the xquator, take the declination out of the angle at the x quaror, fo shall you haue the angle at the parallell Then

As the fine of the angle at the paralletly, to the cofine of the declination: So the length of the axis of the Ityle, to the diftance betweene the center and the parallell.

Thus in our example, the angle at the equator belonging to the houre of 4 after noone, was found before to be $51 \mathrm{gr}_{\text {a }}$ 30 m : if you would find the diftance betweene the center and the zquator, extend the cópalles from the fine of 5 xgr .30 mo . vnto the fine of 90 gr . the complement of the declination, the fame ex'ent wiil reach in the line of numbers, from iz vato 15.33 , and fuch is the diftance vpon the houre-line of 4 betweene the center and the xquator.

If you would finde the diftaice vpon this houre-line, betweene the center and the inner tropique, whofe declination is knowne to be 23 gr .30 m . adde the declination to the angle at the xquator, lo the angle at the parallel will be 75 gr . whicrefore extend the comp iffes from the fine of 75 gr . vnto the fine of 60 gr .30 m . the complement of the declination, the fame extent will reach in the line of numbers, from 12 vnto 11.40 , and fuch is the length of the houre-line of 4 betweene the center and the tropigue of v.

If you would finde the diftance vpon this houre-line betweene this center and the tropique of 5 , which is here the farthef from the center, take the declination out of the angle at the equator, fo the angle at the parallell will be 28 gr . wherefore extend the compaffes from the fine of 28 gr . vnto the fine of 66 gr .30 m . the lame extent will reach in the line of numbers, from 12 vnto 23.44, and fuch is the diftance betweene the center and the tropique of 5 vpon this houreline of 4 . The like reafon holdeth for all the reft, which may be gathered and fer downe in a table.

That done and the æquator drawne as before, if you would draw the tropique of σ, looke into the table, and there finding vader the title $\mathbf{C} \Phi$ the diftance of the fubltylar between the center and the parallel of to to be 20 inch. 80 cent, take

20 inch 80 cent. out of the line of inches, and prick them downe in th: fubityiar of your plane from C vato 9 .

Or if either the center fall without yout plane, or the extent be too large for your compaffes, you ingy prick downe the difference berweene $\mathrm{C} r$ and $\mathrm{C} \boldsymbol{\sigma}$. A'shere the diftance $\mathrm{C} r$ betweene the center and the æquator is 14.57 , the diftance C T 20.80 , the difference 6.23 , therefore taking 6 inches 23 cent. prick them downe on the fubftylar from r vnto-s, and you fhall have the fame interlection of the tropique and the fubftylar, as before; and the like reafon holdech for pricking downe of the reft of thele diftances on their feu rall houre-lines.

Then hauing the points of interfection betweeu the hourer lines and the parallel, you may ioyne them all in a crooked line without making of any angles, the lue fo draw ef fhall be the tropique required. And after this maner mav you draw any other parallel of declination, whercof you haue examples in the molt of the former Diagrans.

CHAP. XIIIT.

Todefcribe the parallels of the Siznes in any of the former Plans.

THe xquator and the tropiques before d fribed, doe Thew the Suns entrance into 4 of the Signes, the xqua or into r and \approx, the one tropique into 5 , and he other meo ψ, the reftot the intermediare Signes will be deicribed in the fame manner as the tropiques, it firt we know their declunation.

The manner of finding the declination not onely of the beginning of the Signes, but of all other points of the ecliptique,
is before fet downe in 2 Prop. Aftronomicall, pag. 52 . by which you may find the declination of the begin ing of \mathcal{O}, m, anc m, \notin to be 11 gr .30 m . and of $I I, \Omega, F$ and \xlongequal{n} to bee 20 gr .12 m . If then you infribe the chords of II gr .30 m . and of 20 gr . 12 m . into the former figure B D T Pag. 1450 from \mathcal{D} toward \mathcal{T}, the lines drawne from B through the termes of thofe chords fhall be the Signes required.

And with thefe dechnations, the height of the ityle, and the length of the axis, you may finde the angles at the parallel, and then the diftances betweene the center and the parallell, which being pricked downe vpon their feucrall houre-lines fhall giue you the points of interfection, by which you may draw the parallels of the Signes, as in the figures belonging to the polar planes.

CHAP. XV.

To defcribe the parallels of the length of the day in any of the former Planes.

THe length of the day will alwayes be 12 houres long when the Sumae commeth to be in the æquator, and this bolderh in all latirudes; but at other times of the yeare the rame place of the Sunne, will not giue the fame length of the day in another latitud: ; wherefore the latitude being known we are firf

To finde the declination of the Sumse agreeing to the length of the day.

Confider the difference betweene the length of an xquino: tiall day and the day propofed, and turne the time into deo grees and minutes.

As the fine of 90 gr . is to the fine of halfe the difference:
So the cotangent of the lat cude. to the tangent of the declination.

As if the length of the day propofed were 15 houres, the difference beeweene this and an æquinoctiall day (whofe length is alwaies 12 houres) would bethree hourss, which make 45 gr . and the halfe difference is 22 gr .30 m . wherefore extend the compaffes from the fine of 90 gr . vnto the tangent of 38 gr .30 m . the complement of the latitude, the fame extent will reach from the fine of 22 gr .30 m . vato the tangent of 16 gr .55 m . for the declination of the Sunne at

fuch

Parallels of the length of the day.

fuch time as the lengeth of the day is either 9 or 15 hounes: and itom the fiae of 30 gr . vato the taigent ot 21 gr .40 m . for the decination belouging to γ or 16 houres, ana from the fint 0.15 gr . vato the tangent or 18 gr .38 m . tor the dechnation btivuging to 10 or 14 housts, and from the due of 7 gr .30 w. vatu the tangent of 5 gr .56 m . for the deciilation or the Sun when the eugcin or tie day is cither, if or 13 houres.

If then you inilcribe the chords of thefe arkes into the for-

Ccc
mer
mer figure $\mathcal{B} D$ T, the lines drawne from \mathcal{B} through the termes of thefearks, thall be the lines belonging to the diutna:i arkes, and the leuerall diftances betweene them and the point C giue the like daftances betweene the center and the parailels of the length of the day vpon the houre-lines in your plane.

Or comparing thefe angles of declination with the a gles at the xguator, you may haue the angles at the paralien, and then find the diftances betweene the center and the parallel, which beng pricked downe vpon the feuerall houre-lines, fhat giue you the points of interfection, by which you may draw the parallels of the length of the day, whereot you have an ther example in the diagram belonging to an horizontall plane pag. 105: And by the fame reaion you may draw the parall Is of thofe circles to which the Sunne is verticall, the parallels of the princioall fealts, or what die depends on the declination of the Sunne.

To draw the old vnequall boures in the former Planes.

IT was the manner of the Ancients to diuide the day into welue (quall houres, and the might into twelue o:her equal houres, and fo the whole day and night ineo 24 houres. Of thefe 24, thole which belonged vnto the day, were cither longer or fhorter (excepting the two xqumoctiall dayes) then thole which belonged vnto the night; and the Summer houresalwayes longer then the houres in the Winter, according to the lengthening of the dayes, whereupon they are called the old vnequall (and by fome the Planerary) houres.

To expreffe thefe in the former Planes: firt draw the common houre-lines, the æquaror, and the tropiques, as before: then deferibe two occult parallels of the length of the day, one for 9 houres, the other for 15 houres; for fo you mav draw a ftraight line for the firft vnequall houre through $5 \mathrm{bo.45m}$ in the parallel of I , and through $8 \mathrm{bo}$.15 m . in the parallel of 9 . This ftraight line fhall pafie directly through 7 ho. a m. in the æquator, and fo cut off a twelfth part of the arkes aboue the horizon, both from thefe two parallels and the xquator: and being continucd vnto the tropiques, it fhall alfo cut off about a twelfth part from them, and all the reft of the parallels of declination, without any fenfible error.

In like manner may you draw the fecond vnequall hoare through 7 ho . in the parallel of I, through 8 ho . in the x quaCec 2

204 Houres from Surrijing and Sunfetting. ror , and through 9 bo. in the parallel of 9 , and fo in the reft, as, inthis Table.

A d of the fe vnequall houres you haue a farcher example inthe diagram belo, ging to the polar declining plane, Pag. 130.

CHAP. XVII.

To dram the boures from Sunne rijing and Sume fetting in the furmer Planes.

T
O know how many houres are paft fince the Sun rifing, Lor now many remainc to the Sunfetting; firlt draw the comilion

Fioures fram Suntifing and Sun fetting.

 common houre-lines, the xguaror, and the tropiques, as before: then deferibe two occilt parallels of the length of the day, one for 8 houres, and the orher for 16 houres. For fo
you may draw the firf houre from the Sun rifing through the common houres of 5 in the parallell of $\mathbf{1 6}$, wf 7 in the x quator, a d of 9 in the parallel of 8 . In like manner the fecorid houre from Sun rifing through the common houes of 6 in the pa allel of 16 , of 8 in the xquator, and of so in the para 11 of 8 . And fo thereft in their order.

The firft houre before Sun ferting, or the 23 houre from Ccc 3
the
the laft Sun fetting, may be drawne in like fort through the common houres of 3 atter noone in the parallel of 8 of 5 in the zquator, and of 7 in the parallu lot 16 . The fecond houre before Sun fetring, or the 22 houre after the laft Sun fecting through the conmon houres of 2 in the parallel of 8 , of 4 in the equator, and of σ in the parallel of $\mathbf{1} \sigma$. And fo the relt in the like order, whereof you laue another example in the Diagram belonging to the declining verticall, Pag.in6.

CHAP. XVIII.

Io draw the borizontall line in the former planes.

THe common houre-lines doe common depend on the hadow of the axis, but the parallels of the Signes, and of the length of the day, the houre-lines from Sun rifing and Sun fetting, with many others, depend on the fhadow of the top of the fyle, or fome one point in the axis, which here fignifieth the center of the world, and is reprefented by the point B. And thefe lines fo depending, are then onely vfefull when they fall betweene the two tropiques, and within the horizon.

There may be fcucrall horizontall lines drawne vponeuery plane, as I flewed before in finding the inclination of a plane; but the proper horizontall line which is here meant, muft alwaies be in the fame plane with B the top of the ftyle; fo that in an horizonsall plane there can be no fuch horizontall line, but in all other planes it may be found by applying the horizontall legge of the Sector vnto the top of the ftyle, and then workiug as before ; and the interfection of this line with the meridian or fubftylarline, may be found by propor-

1 To finde the interfection of the horian with the meridiais, in an equinoctiall plaze.

As the tangent of 45 gr .
to the tangent of the laritude :
So is the height of the fyle,
to the diftance between the ftyle and the horizon. tall line.

As in the example of the former æquinotiall plane, P ag 142. extend the compafles from the tangent of 45 gr , vnta 51 gr .30 m . the tangent of the laticude, the fame extent will reach in the line of numbers, from 52 the length of the ftyle vnto 66, and fuch is che diftance betweene the ftyle and the horizontall line; wherefore I take 66 parts out of a line of inches, and prick them downe in the meridian line from C vnto H aboue the fyle in the upper face, but below the fyle in the lower face of the plane, fo a righe line drawne through H, parallel to the houre of σ, fhall be the horizontall line.

> 3 To find the interfection of the borizon with the. meridian, in a direat polar plawe.

As the tangent of 45 gr .
to the cotangent of the latitude:
${ }_{3}$ So the length of the ftyle,
to chediftance betweene the ftyleand the horizone tall line.

F As in the example of the former polar plane, Pig.r44. extend the compafles from the tangent of 45 gr . vnto tangent of 38 gr .30 m . the complement of the latitude, the fame extent will reach in the line of numbers, from 1. 6x the length of the fyle, vnto 1. 28, and luch is che diftance vpou the inexıdiam

208 The defription of the verticall circles ridian betweene the fyle and the horizonrall line.

In all. p right plan s, whecher they be direct verticall, or declining, or meridian planes, the hor izoniall line muftalwayes be drawne through A the foot of the fyle, as may appearc in the examples before, Pag. 102 . 107. 116 .

And gencrally inali planes whatlocuer, the horizontall line muft be daawne through the inter! (ction of the aquatour with the houre of 6 . Or if that inteffection fall without the plane, yet if any arks of the length of the day be drawne on the plane, the horizontall line may be drawne through heir interfections, with the houres of the suas rio fing or fetting.

C H A P. XIX.

To defcribe the verticall circles in the former Planes.

THe verticall circles commonly called Azimuths, are great circles drawne through the zenith, by which we may know in what part of the heauen the Sun is, how far from the Eaft or Weft, and how neere vnto the meridian.

In all vpright planes, whether they be direct verticals, or declining, or meridian planes, the lemidiameter o: the horizon will be the fame with $A B$ the perpendicular fide of tire Ityle, and thefe Azimuths will be parallels one to the other, and the diftance of each Azimurh, from the foote of the ftyle vpon the horizontall line, may be found in this maner.

Confider the length of the fyle in inches and parts of inches, and rhe diftance of each Azimuth from the ityle, according to the angle at che zenith in degrees and minutes.

> As the tangent of 45 gr . to the tangent of azimuth :

So the length of the ftyle, tit wh
to the length of the horizontall line betweene the fyle and the azimuth.

As if it were required to draw the common azimuths on the South face of the verticall plane before delcribed, where $A B$ the length of the fyle may be fuppofed to be 10 inches.
Here che plane hauing no declinatio, the fyle is in the plane of the meridian, and to pointeth directly into the South. The point of $S 6$ is in gr. $15 m$. diftant from the ftyle, and Ddd SSE

SS E 22 gr .30 mm . and the reft in their order: wherefore ex ${ }^{-}$ tend the compaffes from the tangent of 45 gr . v. to 20 in the lise of numbers, the: taine extend will reach from the tangent of 11 gr .15 m . vito I , 99 in the line of numbers for the length of the tangent line, betweene the Ayle and the poinc $S 6 E$, and from the targent of 22 gr .30 m vito 4 14 for $\gg \mathcal{E}$, and io for the reft, as in this Taide.
Ia tike manerin the firft exámple of the declining plane, where the style flanderh according to the declinati: $\mathrm{n}^{\prime} 24 \mathrm{gr} .20 \mathrm{~m}$, diftant from the South roward the Weff. The next popit of'S 6 W is but IB igr..s mo. diflaint fiom the ityly; and the fecond of $5 S$ W. onely I g . 50 m . and the shird of $\langle W 6 S$ is againe 9 gr. 25 mand the reft intheir order. Whicrföre haang before found the length of the ffyl: to be 6 inches 80 parts, extenit the compafies from the tangent of 45 gr . vato 6. 80 pares in the lire of numbers, the fame extent will reach from the tangent of 24 gr 20 m . vnto 3,07 in the line of numbers for the lengrh of the tangent line bet weene the fyle and the South, and from the fangent of -3 gr. s m.vito e. 58 for the point of S6W ; and fo for the reft, as in this Table.
That donc, if you take thefe parts out of a line of inches; and pricke them downe in the horizontall line on eicher fide of the flyle , drawing
right lines perpendicular to the horizon through thefe interfections, but fo as they may be contained betweene the horizontall and the tropiques, the lines fo drawne thall be the azimuths required.

In an horizontall plane thefe azimuths are drawne more eafily. For here the perpendicular fide of the ftyle is the fame with the axis of the horizon, and the foote of the fyle is the verticall point, in which all the azimuth lines doe mete as their circles doe in the zenith: wherefore let any circle defcribed on the center A, at the foote of the ftyle, be diuided firt into foure parts, beginning at the mersian, and then each quarter fubdiuided either into eight equall parts, according to the points of the Mariners compaffe, or into 90 gr . according to the Aftronomicall dinifion; if you draw right lines through the center and thefe diuifions, the lines fo drawne fhall be the azimuths required.

In all other planes inclining to the horizon, thefe verticall circles will meete in a point , but that verticall point being more or leffe diftant from the foote of the ftyle, the angies as this point will be vnequall.

1 To fird the diftance betweene the foote of the fitle, and the verticall point.

The verticall point wherein all the verticall lines do meet, ${ }_{5}$ will be alwayes in the meridian, directly vnder or ouer the top of the ftyle; and the angle betweene the perpendicular fide of the ftvle and the verticall line, will be equall to the in clination of the plane to the horizon. Wherefore

As the tangent of 4 s gr .
to the tangent of the inclination of the plane:
So is the length of the ftyle:
to the diftance betweene the foote of the fyle and the verticall point.

Thus in the firft example of the declining inclining planes; where the vpper face of the plane looking Southweit, the declination was 24 gr .20 m . the inclination 36 gr ; and you may fuppofe $A \mathcal{B}$ the length of the fyle to be 6 inches : if you extend the compaffes from the tangent of 45 gr . vnto the tan-

gent of 36 gr . the lame extent will reach in the line of numbers from 6.00 vnto 4.36 , for the diftance $A V$ betweene A the foote of the ftyle and F the verticall point.

2 To find she diftance betweene the foste of the fyle and the borizentall line.

Asthe tangent of the inclination of the plane, is to the tangent of 45 gr .
So the length of the fyle,
to the diftance betweene the foote of the fyle and the horizontall dine.

So the fame extent of the compaffes as before, will reach in theline of numbers from 6.00 vnto 826 for the diftance AH betweene the foote of the ftyle and the horizontall line.

Then may youtake 4 inches 36 cent. and pricking them downe from A the foot of the ftyle unto V the verticall point in the meridian, draw the line $V A$, which being produced fhall cut the horizon in the point H with right angles, and be that particular azimuth which is perperdicular to the plane.

Or you may take 8 inches 26 cent. and pricke them downe in the former line $V A$ produced from A vito H, and fo draw the horizontall line through H pefpendicular vnto $V \mathrm{H}_{2}$ which horizontall line being produced will croffe the æqustor in the fame point wherein the æquator croffeth he houreline of 6 , vnleffe there be fome former error.

3 To find the angles macie by the atimuth lixes as the verticall point.

The angles at the zenith depend on the declination of the plane, as in our example; where the ftyle fandeth according to the declination 34 gr .20 m . diftant from the Sou.h toward the Weft, the azimuth of rogr. from the meridian Eaftward will be 34 gr .20 mm , the azimuth of 10 gr . Weftward will be

Ddd 3
onely their order.

Or if you would rather defrribe the common azimuths, the point of $\mathrm{S} 6 \varepsilon$ will be 35 gr .35 m . the point of 36 W 13 gr .5 m . diftant from the fyyle, and to the reft in their order. Then

As the fine of 90 gr . to the coffine of the incliation of the plane:
So the tangent of the angle at the zeniith,
to the tangent of the angle at the verticall point betweene the line drawne through the foot of the fyle and the azimath required.

Wherefore the inclination of the plane in our example being 36 gr . extend th compaffes from the fine of 90 gr . vinto the fine of 54 gr . the fame extent fhall reach in the line of tangents, from 24 gr .20 mm . vnto 20 gr .5 m . for the ange $H V a$ at the verticall point, betweene the line $V H$ drawn through A the foore of the fyle and the South. A gaine, the fame extent will reach from the tangent of 13 gr .5 m . vnto 10 gr .38 m . for the angle belonging to 56 W ; and fo for the reft, as in this table.

Thefe angles being knowne, if on the center V, at the verticall point, you defcribe an occult circle, and therein infcribe the chords of thefe angles from the line $V H$, and then draw right lines through the verticall point, ; and the terms of thofe chords, the lines to drawne fhall be the azimuths required.

The

The like reafon haldeth for the drawing of the adimuths vponall other inclimng planes, whereof you haue another example in the Disgram belonging to tho meridian incliner, Pag. 126.

Or for further fatiffaction you may finde where each azimuth lime fhall croffe the equator.

> As the fine of 00 gr .
> to the fine of the latitude :

So the tangent of the azimuth from the meridian, to the rangent of the rguator from the meridian.

Extend the compaffes from the fine of 90 gr . vnto the fine of our latitude 51 gr .30 m . the lame extent will reach in the lite of rangents from 10 gr. vito 7 gr . 50 m . for the interfeCtion of the xquator with the azimuth of 10 gr . from the meridian. Againe, the fame extent will reach from 20 gr. vito 15 gr .54 m . for the azimuth of zogr . And fo the reft, as in thefe tables.

By which you may fee thit the azimuth 90 gr. diftant from the meridian, which is che tine of Eaft and Weft, will croffe the xquator at 90 gr . From the meridiait in the fame point. with the horizontalline and the houre of 6 , And that the azimuth

216 The defoription of the parallels of the horizon zimuth of 45 gr . will croffe the xquator at 38 gr .2 ms . from the meridian, that is, the line of $S E$ will croffe the xquator at the houre of 9 and 28 m . in the morning, and the line of $S W$ at 2 bo. 32 min. in the atternoone; and fo for the reft, whereby you may examine your former worke.

CHAP. XX.

To defcribe the parallels of the borizon in the former planes.

THe parallels of the horizon, commonly called Almicanters, or parallels of alticude (whereby we may know the altitude of the Sun aboue the horizon) haue fuch refpect vnto the horizon, as the parallels of declination vnto the zquator, and fo may be defcribedinlike maner.

In an horizontall plane, thefe parallels will be perfect circles; wherefore knowing the length of the ftyle in inches and parts, and the diftance of the parallell from the horizon in degrees and minutes.

> As the tangent of 45 gr
> is the length of the ftyle:
> So the cotangent of the parallell to the femidiameter of his circle.

Thus in the example of the horizontall plane, Pag. ${ }^{\text {164. }}$. if $A B$ the length of the ftyle hall be 5 inches, and that it were required to finde the femidiameter of the parallell of 62 gr . extend the compaffes from the tangent of 45 gr . vnto 5.00 in the line of numbers, the fame extent will reach from the tangent of 28 gr . the complement of the parallell vnto 2.65 , and if you defreribe a circle on the center A to the femidiameter of 2 inches 65 sent. it hall be the parallell required.

In all vpright planes, whether they be direct verticals, or declining, or meridian planes, thefe parallels will be conicall fections, and may be drawne through their points of interfection, with the azımuth lines, in the fame maner as the parallels of declination, through their points of interfection with the houre-lines. To this end you may fint finde the diftance between the top of the fyle and the azimuth; and then the diftance berweene the horizon and the parallell, both which may be reprefented in this maner.

On the center B and any femidiameter $\mathcal{B} H$, defcribe an occult arke of a circle, and therein infcribe the chords of fuch parallels of altitude as you intend to draw on the plane, (I haue here put them for 15.30 .45 and 60 gr .) then draw right lines through the center and the termes of thofe chords, fo the line $\mathcal{B} H$ fhall be the horizon, and the reit the lines of altitude, according to their diftance from the horizon.

That done, confider your plane (whieh herefor example Eee
218^{5} The deforipion of the pit. Wlels of the borizut. the South face of our verticall plane, page I68) wherein liauing drawne both the horizontall and verticall lines, as 1 Shewed before, filf take out e A, the lengch of the fyle, and pricke that downe in this horizontall line from \mathcal{B} vnto A; then take out all the diftances betweene B the top of the fyle and the feuerall points wherein the verticall lines doe crofe the horizontall, transterre them into this horizoatall line B H , from the center B , and at the termes of thefe diftances erect lines perpendicular to the horizon, noting them with the number or letter of the azimuth from whence they were taken, fo thefe perpendiculars fhall reprefent thofe azimuths, and the feuerail diftances betweene the horizon and the lines of altitude fhall giue the like diftances, betiveene the horizontalland the paralles of a citude vpon the azimaths in your plane. Vpon this ground it forsoweth,

1. To find the diftance betweerse the :op of the foyle, and the Jeucrall points wisecein the azimuths doe croffe the borizontall line.

Hauing drawne the horizontall and azimuth lines as before, looke into the table by which you drew them, and there. you hall haue the angles at the zenith. Thea

As the cofine of the angle at the zenith, is to the fine of 90 gr .
So the length of the ftyle, to the diffance required.

$$
\text { Ece } 2
$$

The defcription of the parallels of the hovizow

As in our example of the verticall plane, where $A B$ the length of the ftyle was fuppofed to be 10 inches, extend the compaffes from the fine of 78 gr .45 m . (the complement of II gr. 15 m the angle at the zenith, belonging to $S 6 E$ and S $6 . \mathrm{W}$) vnto the fine of 90 gr . the fame extent will reach from 10.00 the length of the ftyle, $\mathbf{v n t o} 10.20$ for the diftance betweene the top of the fyle and the interfection of the azimuth $S 6 \varepsilon$ with the horizontall line, which diftance may be called the fecant of the azimuth, and may ferve for the drawing of the parallel of 45 gr . from the horizon. The like rea. fon holdeth for the reft of thefe diftances here reprefented in the line $\mathcal{B} H$.

2 To finde the diftance betwecrecthe hovizon. and the parallels.

As the tangent of 45 gr . to the tangent of the paralleli:
So the fecant of the azimuth, to the diftance required.
the horizon, vpon this verticall plane; extend the compaffes from the tangent of 45 gr . vnto the tangent of 15 gr . the fame extent will reach in the line of numbers from 10.00 the fe_{e} canr of the Sourh azunuth vnto 2.68 , and therefore the diftance betweene the horizon and the parallell of 15 gr . is 2 inches 68 cent. vpon the South azimuth. Againe, the fame extent will reach from 10.20 the fecant of $S 6 E$ vnto 2.73 for the like diftance belonging to $S 6 E$ and $S 6 \mathrm{~W}$; and fo for the ren, which may be gathered and fet downe in the table.

That done, and the horizon and azimuths being drawne, pricke downe zo inches from the horizontall line vpon the $S_{\text {ourh azimuth, and } 10 \text { inches } 20 \text { cest. on the azimuth of }}$ $S 6 \varepsilon$ and $S 6 W$, and io inches 9_{2} cent. on the azimuths of $S S E$ and $S S W$, and 12 inches 3 cent , on the azimuth of $S \varepsilon b S$ and $S w b S$, and fo the reft of thefe diftances on theis feuerall azimuths: then if you draw a crooked line through thef points, that may make no angles, the line fo drawne Shall be the parallell of 45 gr . from the horizon. In like manner may you draw the parallel of 15 g . or any other parallell of altitude vpon any verticall plane.

If the plane incline to the horizon, after we haue found the verticall point, and drawne the horizontall line, weare farther to finde the length of the axis of the horizon, then the angles betwixt this axis and the azimuth lines, and fo the feuerall diftances betweene the parallels and the verticall point, all which may be reprefented in this manner.

On the center 3 , and any femidiameter, defcribe an occult quadrant of a circle, and therein infcribe the chords of fach parallels of alticude as you intend to draw on the plane, drawing right lines through the center and the termes of thefechords, fo the line B H fhall be the horizon, and his perpendicular $B V$ theaxis of thehorizon, and the reft the lines of altitude, according to their diftance from the horizon.
That done, confider your plane, which here for example Eec 3
is the firft of our three declining inclining planes, wherein hauing drawne both the horizontall and verticall lines as I Thewed before, firt take out the axis of the horizon, which

is the line between \mathcal{B} the top of the ityle and V the verticall point, and pricke that downe in this figure from B vnto V; then take out both the line $V H$ and all the reft of the diftances betweene, V the verticall point and the feuerall points wherein the verticall lines doe crofle the horizontall line of this figure, from the point V, noting the place where they croffe the horizontall line with the number or letter of the azimuth from whence they were raken, and drawing the azimath lines from V through the lines of altitude.

Or hauing the Sector you may draw an occult line $V E$ perpendicular to the axis V B , and therein prick downe the tangent of the complement of the inctination of the plane from V vato E : then draw the line $\varepsilon \mathrm{F}$ parallel to the axis, croffing the line $V \mathrm{H}$ produced in the point F , fo this line E F will be as the line of fines vpon the Sector, and therein
you may orick downe the fines of the complement of the angles at the zenith from E towards F, and draw the vertical lines by thofe points through the lines of altitude, fo the angles at V, betweene the axis $V B$ and thole azimuth lines, Thall be the angles betweene the axis of the horizon and the azimuth lines on your plane, and the feuerall diftances'betweene the point V and the lines of altitude, fhall giue the like diltances betweene the verticall point and the parallels of alcitude vpon the azimuths in your plane. Vpon this ground it followeth,

I To firde the length of the axis of the

Horizon.

The verticall point is al wayes either direaly ouer or voder the top of the ftyle, and the diftance betweene them is that which I call the axis of the horizon, which may thus be found,

As the cofine of the inclination, to the fine of 90 gr .
So the length of the ftyle, to the length of the axis of the horizon.
For example in the firf of the three declining inclining planes, the inclinatiou to the horizon is 36 gr . the leng th of the flyle A B fixe inches, extend the compalfes from the fine of 54 gr . the complement of the inclination vato the fine of 90 gr . The fame extent will reach in the line of numbers from 6.00 vnto 7.42 , and fuch is V B the length of the axis re-
quired.

370

2 To finde the angles costaised betweene the borizon and the verticall lines opon your plave.

The angles at the verticall point betweene the axis of the horizonand the azimuth lines vpon your plane are reprefented in this figure by thofe at V, betweene V B and the azimuthis. The angles betweene the horizon and the azimuth lines being ecmplements to the former, are reprefen-

ted
ted etther by thore which are made by V E or by B H, and the azimuth lines which are drawne from V.

That you may finde them, looke into , he Table, by which you drew the azimuth lines, there fhall you finde the angles at the zenith. Then

As the fine of $9^{\circ} \mathrm{gr}$. to the cofine of the angle at the zenith :
So the tangent of the inclination to the horizon; to the tangent of the angle betweene the horizon and the verticall line.

In our example where the inclination to the horizon is 36 gr and the angle at the zenith betweene the azimuth at the ftyle and the meridian, is according to the declination 24 gr .20 m . extend the compaffes from the fine of 90 gr . vnto the tangent of 36 gr . the fame cztent will reach from the fine of 65 gr .40 mz . the complement of the angle at the zenith,vnto the tangent of 33 gr .30 m . for the angle contained betweene the hor:zon and the South part of the meridian line. Againe, the fame extent will reach from the cofine of 35 gr . 35 m : the angle at the zenith belonging to $S 6 E$ vnto the tangent of 30 gr .3 m . for the angle betweene the horizon and the azimuth line of S 6 E: The like rafon holderh for the reft, which may be found and fet downe in the Table.

East.	114251191218640 In-		
	915092161		
$\mathcal{S E}$			
	$42020 \quad 53330113$		
	13 510 39351712		
	5012935	997	
	st		
S.W ${ }^{2}$			
ws w	4		
			725

Then may you either draw thefe angles at V in the former figure more perfectly, and thence finiif your worke, or elfe. procced,

3 To finde the diftance betweene the verticall poins:, asd the parallells of the horizon.

Thefe diftances may be found by refolving the triangles in the laft figure made by the axis, the lines of altitude, and the azinnth
azimuth lines. For hauing the length of the axis and the angles at the horizon, if you adde the diftance of the paralleil from the horizon vnto the angle at the horizon, you thall haue the angle at the parallel. Then

> As the fine ofthe angle at the paralle, to the cofine of the altitude :
> So the length of the axis,
> to the diftance betweene the verticall point and the parallell.

Thus is our example if it were required to finde the diItance vpon the ftylar azimuth VH , betweene the verticall point and the horizon, you haue the rectangle triangle V BH wherein the angle at the horizon here reprefented by B H V is (equall to the inclination of the plane) ${ }_{3} 6 \mathrm{gr}$. and B V the axis of the horizon betweene the plane and the top of the flyle, is 7 inches 4^{2} cent. Wherefore extend the compaffes from the fine of 36 gr . vnto the fine of 90 gr . the complement of the altitude, the fame extent will reach in the line of numbers from $7 \cdot 4^{2}$ vnto 12.62 , and fuch is the diftance of the perpendicular azimuth line V H betweene the verticall point and the horizon.

In like manner if you would finde the diffance vpon the meridian between the verticall point and the horizon, extend the compaffes from the fine of 33 gr .30 m . the angle at the horizon, to the fine of 90 gr . the lame extent will r cach in the line of numbers from 7.42 vnto 13.44 , and fuch is $V a$ the diftance betweene the verticall point and the horizon vpon the line of the South azimuth, that is, upon the meridian line.

But if you would finde the diftance vpon the meridian betweene the verticall point and any other parallell of the horizon, as vpon the parallel of 26 gr .34 m . then adde thefe 26 gr .34 m . vnto 33 gr .30 m . the angle at che horizon, fo fhall you thaue 60 gr .4 m . for B D V the angle at the parallel. And if you extend the compaffes from the fine of $60 \mathrm{gr}_{\mathrm{o}} 4 \mathrm{~m}$, vnto
the fine of $63 \mathrm{gr}, 26 \mathrm{~ms}$: the complement of the paraliell from, the horizon, the fame extent will reach in the line of numbers from 7.4^{2} the length of the axis, vntó 7.66 , and uch is the diftance VD betweene the verticall point and the pas. parallell of 26 gr .34 m . vpon the meridian line. The like reafon hoideth for all the reft, which may be gathered and fet downe in the table.

That done, and she horizondrawne as before, if you would draw the parallel of 26 gr .34 ms . from the horizon, looke into the table, and there finding vnder the title of the parallel of 26 34, the diftance on the Sunth azimuth line to be 7.66 , take 7 inches 66 cess, out ot a line of inches, and prick them down on the meridian of your plane, from the verticall point at V.

Or if either the verticall point fall without your plaae, or the extent at any time be too large for. your compaffes, you may pricke downe the diftance betweene the horizou and the pardlel-As here the diftance betweene the verticall poine and the parallel is 766 , betweene the verticall point and the. horizon 13.44 , 'he difference betweene them 5.78 is the di-m flauce from the horizon to the parallel, which being pricked downe upon the meridian, fhall giue the fame interfection as. before. And the like reafon holderh for the pricking downe the relt of thele diftances on their feuerall azimuths.

Hauing the points of interfection betweene the azimaths: and the parallel, you may ioyne them all, in a crooked line without making of angles, the line fo drawne fhall be the pan, rallell requird. And vpen this ground it followetho.

To defcribe fuch parallels on the former plames, as may forews 3he propartion of the fhadow wsio the gromon.

The proportion of a mans fhadow vnto his height, or other fhadow to his gnomon fet perpendicular to the horizon, may be fhewed by parallels to the horizon, if they be drawne to a due altitude, which may thus be found:

> As the length of the fhadow, to the length of the gnomon: So the tangentof 45 gr .
> to the tangent of the altitude.

As if it were required to finde the altitnde of the Sunne when the fhadow of a man fhall be decuple to his height, extend the compaffes from 10 vato I in the line of numbers, the lame e tent will reach in the tangent of 45 gr . vnto the tangent of $s g^{g} .42 \mathrm{~m}$; which fhewes that when the Sun commeth to the alcitude of 5 gr .42 m , your fhadow, vpon a levell ground, will beten times as much as your height. In the lome maner you may finde that at 7 gr .7 m . of altitude your fhadow will be ociuple, at 9 gr .27 m . fextuple, at is gr .18 m . quintuple, at 14 gr .2 m . quadruple, at 18 gr .26 m . triple, at 26 gr .34 mm . double to your height, at 33 gr .4 I m . as 3 vnto 2 . at 36 gr .52 m as $4 \mathrm{vnto} 3,3 \mathrm{t} 38 \mathrm{gr} .40 \mathrm{mo}$ as 5 vnto 4 ,at 45 gr . equall, at 51 gr .20 m . as 4 vnto 5 , at 53 gr .7 mmas 3 vnto 4 , at56 gr .19 m as 2 vnto 3, at 59 gr .2 m. as 3 vato 5 , at 63 gr . 26 m . as i unto $2,8 \mathrm{cc}$.

If then you draw a paralldll to the horizon at 5 gr .42 m . another at 7 gr .7 m . and fo the reft, when the lhadow of the ftyle falleth on the parallell, you have the proportion, and thereby may you know the fhadow by the height, and the height by the fhadow, whereof you haue examples.Pag. 126 . and 157.

1 might here proceed to thew the defcription of the circ'es of pofition, the Signes of the Zodiack in the meridian; the Signes afcending and delcending, with fuch other gnomonicall conclufions; but the fe would proue fuperfluous to fuch as vnderitand the do Arine of the Sphere; and for others, that which is deliuered may.fuffice for ordinary vfe, tt being my intention not fo much to explane the full vfe of fhadowes (whereof I haue lately giuen a large example in an other place) as the vfe of thefe lines of proportion, that were net extant heretofore.

An Appendix concerning

 The defription and rofe of a f mall portable Qusdrant, for the more eafie finding of the boure and $A_{\text {zimuth }}$.
CHAP. 1. Of the defcription of tbe Quadrant.

HAuing defcribed thefe ftanding planes, I will now thow the moft of thefe conclufions by a fmall Quadrant: This might be done generally for all latitudes, by a quarter of thegenerall Aftrolabe, deicribed before in the vfe of the Settor, pag. 58 . and particularly for any one latitude, by a quarter of the particular Aftrolabe,there alfo defcribed, pag. 63. which if it be a foote femidiameter, may fhew the azimuth vuto 2 degree, and the time of the day vito a minute; but for ordinary fe this fmaller Quadrant may fuftice, which may bee made portable in this manner.
\therefore Vpon the center A, and femidiameter $A B$, deferibe the yrke $B C$: the fame famidiameter will fet of 60 gr . and the halfe of that will be 30 gr . which being added to the former 60 gr . will make the arke BC to be 90 gr . the fourth part of the wholecircle, and thence comes the name of a Quadrant.

2 Leauing fome little fpace for the infcription of the moneths and dayes, on the fame center A, and femidiameter $A T$, defcribe the arke $T D$, which thall ferue for either tropique.

3 Divide the line $A T$ in the point ε, in fuch proportion, as that $A T$ being 10000, $A E$ may be 6556 , and there draw another arke $\varepsilon \mathrm{F}$, which hall feruefor the Equator, or $A E$ being 10000 let ETT be 5253 .

4 Divide $\& \mathrm{~F}$ the femidiameter of the xquator in the point G, fo as A F being 10000 , the line $A G$ may bee 4343,

The injcription of the generall lines:

ind on the censer G and femidiaineter G D deferibe the arke $\mathcal{E D}$, which fhall ferue fore fourth pare of the ecliptiq a.

5 This part of the ecliprigue may be divided into three Signes, ing 27 gr .54 m . you may lay 2 ru ler to the center A and 27 gr. 54 n. in the Quadrant $B C$, the point where the rulér croffeth the Ecliptique, thall be the firf point of γ. In like manner the right afcenfion of the firft point of II being 57 gr .

6 Tbe line E T betweene the equator and the tropique, which I call the line of declenation, may be divided into 23 gr . $\frac{1}{2}$, out of this Table. For let $A: E$ the femidiameter of the xquator be 10000, the diftance betweene the aquator and 10 gr . of declination may bee 1917. more; between the aquator and 20 gr .4281 ; the diftance of the tropique from the equator 5252.

7 You may put in the moft of the principall ftarres betweene the xquator and the tropique of ξ, by their declination from the $x q u a t o r$, and righta afcention from the next equinoctial point. As the declination of the zoing of P egafies, being 13 gr .7 m . the right afcenfion 358 gr .34 ms , from the firlt point ot r, or $1 \mathrm{gr.26} \mathrm{~m}$. fhort of fit. If you draw an occult parallel through 13 gr .7 m . of declination, and then lay the ruler to the center eA, and "gr. 26 m ' in the quadraits $B C$, the point where the ruler crofferh the parallell Thall be the \therefore is place for the aring of Pegaws, to which you may

Gr. Parts
1176
355
537
723
91
61106
71302
8,1503
91708
01917
112130
122348
13,2571
142799
153032
63270
173514
183763
194019
0428 I
4
4825
$23 / 5108$
Trols252

et the name and the time when he cometh to the South, at midnight in this maner, W. Peg. * 23 Ho .54 M . and fo for the reit of thefe fue, or any other flarres.

		Ho.M.	R. Afcen	Decl. M
Pega/us wing *	March 8	2354	26	137
Arcturus *	October 14	1358	2937	2110
Lions heart	Auguft 7	9. 48	$32 \quad 58$	1345
Buls eye	cMay 16	415	$63 \quad 33$	15.42
Vultures bedart	Ianua.	1933	$66 \quad 56$	7.58

8 There being fpace fufficient betweene the zquator and the center, you may there defcribe che quadrat, and diuide each of the two fides fartheft from the center A into 100 parts, fo mall the Quadrant be prepared generally for any latitude.

But before you draw the particular lines, you are to fit foure tables vnto yourlatitude.

Firtt a table of meridian alcitudes for diuifion of the circle of dayes and moneths, which may be thus made: Confider the la itude of the place and the declination of the Sun for each day of the yeare. If the latutude and declination be alike both North or both Souch, add the declination to the complement of the latitude, if they bee valike, one North, and the other South, fubitrat the declination from the complement of the latitude, the remainder will be the meridian altitude belonging vnto the day.

Thus in our latitudeof 51 gr .30 m . Northward, whofe complement is 38 gr .30 m . the doclination vpon the tenth day of Iunc will be 23 gr . 30 m . Northward, wherefore I adde 23 gr .30 m . vnto $3^{8} \mathrm{gr} .30 \mathrm{~m}$, the fumme of both is 62 gr .for the meridian altitude at the tenth of Iune, The declination vppon of December will be 23 gr .30 m . Southward, wherefore I take thefe 23 gr .30 m . out of $38 \mathrm{gr} \cdot 3 \mathrm{om}$. there will remaine 15 gr . for the meridian altitude at the tenth of December; and in this maner you may find the meridian altitude for each day of the yeere, and fet them downe in a table.

234 A table of the meridians altitudes.

The Table being made, you may infcribe the moneths, and dayes of each monethinto your quadrant, in the fpace left below the tropique. For lay the ruler vnto the center A, and $16 \mathrm{gr} \cdot 3^{\mathrm{I} s \mathrm{~m}}$, in the quadrant $B C$, there may you draw a line for the end of December and beginning of Ianuary; then laying your ruler to the center A, and $24 \mathrm{gr}^{-17} \mathrm{~m}$. in the quadrant, there draw the end of Ianuary and beginning of February, and fo the relt, which may be noted with I, F, M, A, M, $I, \& c$. the firft letters of each moneth , and will here fa'l betweene 15 gr , and $62 . \mathrm{gr}$.

The fecond Table which youare to fit, may ferue for the drawing and diuiding of the horizon. For drawing of the horizon.

As the cotangent of the latitude,
to the tangent of the greateft declination:
So the fine of 90 gr .
to the fine of inerfection, where the horizon thall croffe the tropiques.
to "cut the tropique in 33 gr .9 mz : wherefore if you lay the suler to the center A, and 33 gr .9 mm . in the quadrant, the point where the ruler croffeth the tropique fhalt be the point where the horizon creffeth the tropique. And if you finde a point at H, in the line $A C$, whereon letting the compaffes, you may bring the point at E, and this point in the tropique both into a circle, the point H hall be the center, and the arke fo drawne fhall be the horizon. Ihen for the diuifion of this horizon.

As the fine of 90 gr . to the fine of the latitude :
So the tangent of the horizon,
to the tangent of the arke in the quadrant, which hall diuide the horizon.
So in our latitude of $5 \mathbf{I g r} .30 \mathrm{~m}$. we fhall finde 7 gr .52 ms bilonging to 80 gr . in the horizon, and is gr .54 m , belonging 20 gr . And to the reft, as this Table.

Whereforeyou may lay the ruler to the center A, and 7 $g r .52 \mathrm{~m}$. in the quadrant $B C$, the point where the a uler croffeth the horizon thall be Io gr . in the horizon; and fo for the reft : but the lines of diftinction betweene each fift degree, will be beft drawne from the center $H_{\text {. }}$

The third table for drawing of the houre-lines, mult be a Table of the altitude of the Sunne aboue the horizon at euery houre, efpecially when he cometh to the aquator, the tropiques, and fome other intermediate declinations.

If the Sunne be in the æguator, and fo haue no dectination.

> As the fine of 90 gr . to the cofine of the latitude :
> So the cofine of the houre from the meridian, to the fine of the altitude.

Thus in our latitude of 51 gr .30 m . at fix houres from the meridian the Sun will haue no altitude, at fiue the altitude. will be 9 gr .17 m ; at foure 18 gr .8 m ; at three 26 gr .7 m ; at two 32 gr .37 m , atone 36 gr .58 m s at noone it will be 38 gr . 30 m . equall to the complement of the lasitude ${ }^{\text {. }}$

If the Sun haue declination, the meridian altitude will be found as before, for the Table of dayes and moneths.
If the houre propofed be fix in the morning or fixat night.

> As the fine of 90 gr .
> t.) the fine of the latitude:

> So the fine of the declination to the fine of the alritude.

Thus in our latitude the declination of the Sun being 23 gr . 30 mo the altitude will be found to be 18 gr .11 mm : the dectination being 11 gr .30 m the altitude will be 9 gr .

If the houre propofed be neither twelue nor fix.

> As the cofine of the houre from the meridian; to the fine 90 gr .

So the tangent of the latitude, to the tangent of a fourth arke.

So in our latitude and one houre from the meridian, this fourth arke will be found to be 52 gr .28 m . at two 55 gr .26 m at three 60 gr .39 mm at foure 68 gr .22 mm . and at fiue hour es from the meridian 78 gr . 22. m.

Then confider the declination of the Sun and the houre propofd; if the latitude and declination be both alike, as with vs in North latitude, North declination, and she houre fall berweene noone and fix, take the declination out of the fourth arke, the remamer thall be your fift arke.

But ifeither the houre fall betweene fix and midnight, or the latitude and declination fhall be vnlike, adde the declination vnto the fourth arke, and the fumme of both thall be your filth arke : or if the fumme fhall exceed 90 gr . you may take. the complement vato 180 gr . This fifth arke being knowne:

> As the fine of the fourth arke, to the fine of the latizude: So the cofine of the fiftarke, to the fine of the alitude.

Thus in our latitude of 51 gr .30 m . Northward, the Sun. hauing $23 . \mathrm{gr} .30 \mathrm{~m}$. of North declination, if it fhall be required to finde the altitude of the Sun for icuen in the morning; here becaufe the latitude and declination are both alike to the Northward, and the houre propofed falleth betweene noone and fix, you may take 23 gr .30 m . the arke of the declination our of 78 gr .22 m . the fourth arke belonging to the fift houre from the meridian, fo there will remaine 54 gr .52 m . for your fift arke. Then working according to the Canon, you fhall find,

As the fine of 78 gr .22 m . your fourthatke, to the fine of $5^{1} \mathrm{gr} .30 \mathrm{~m}$. for the latitude, Ggg 3 .

In retiangnto
$O \Phi H_{\text {, }}$ vr $O E$ Radius ad E M Cotan.lat. isa O D Cofi.hore. ad 'D H Tan.DH. Cui aqualis eft P R cuius compl. $D R$, novis $d r$. arcus quartss.
Conferatur arcus \mathcal{D} H cum arcu declinationis D S, ita dabitur arcus $H S$, cwius complo eft $S R$ óprius dr. arcus quin. trie. Vide eris

Hinc forte preftabit vocare HS arcum quintum ita fecusda operatio inftitsetur per folos finus,

Vel lilibet fubtractionems finusquarti arcus evitare, inveniatur angulus OHD grodfieri poteft varys modis. Nams

1 vt Radiss 2 vt Sim.D H 3 vt Six.DH 4 vt $\operatorname{Six} . \mathrm{D} R$, ad Sir.ang. 0 adSin. 0 adTam DO adSir. E Z, ita Cofolat. OD ita Sir. DO ita Radius ita Rad. ad Cofioan.OHD ad Sin. H ad tan.ang.H. ad Sin. H_{0}.

Idvento vicúnque angulo ad H, erit in reEtangulo $H \mathcal{A} S$,

> et finus recti anguli H. $A S$, ad jinum aress quinti HS, ita finhs anguli nd horiz. S H A, ad fin.folaris altitudinis $S A$.

So the finc of 35 gr .8 m . the complement of your fift arks,
to the fine of 27 gr .17 m . the altitude required.
If in the fame latitude and declination, it were required to finde the altitude for fiue in the morning, here the houre falling betweene fixe and midnight; if youadde $23 \mathrm{gr}_{0} 30 \mathrm{mo}$ vnto $78 . \mathrm{gr} .22 \mathrm{~m}$. the fumme will be 101 gr .52 mm . and the complement to 180 gr . will be 78 gr 8 ms . tor your fifth arke. Wherefore

> As the fine of 78 gr .22 m . to the finc of 51 gr .30 m .
> So the cofine of 78 gr .8 mm .
> to the fine of $9 \mathrm{gr}_{3} .32 \mathrm{~m}$. for the altitude required.

If in the fame latitude of 51 gr .30 m . Northward, the Sunne hauing 23 gr .30 m . of South declination, it were required the altitude for nine in the morning; here becaufe the latitude and declination are vnlike, the one North, and the other South, you may adde 23 gr .30 m . che arke of declination, vnto 60 gr .39 mm . the fourth arke belonging to the third houre from the meridian, fo fhall you haue 84 gr .9 m . for your fift arke. Wherefore

> As the fine of 60 gr .39 m .
> to the fine of 51 gr .30 m .
> So the cofine of 84 gr .9 m .
> to the fine of 5 gr .15 m . for the altitude required.

Andfo by one or other of thefe meanes you may finde the altitude of the Sunne for any point of the ecliptique at all houres of the day, and fet them downe infucha Table as this.

A Table for the altitude of the Sunne in the beginning of each signe at all hearres of the day, calculated for 51 gr .30 m . of Nerth batitude.

Laftly, you may find what declination the Sun hath when he rifeth or fetteth at any houre,

> As the fine of 90 gr .
> to the fine of the houre from fixe:
> So the cotangent of the latitude,
> to the tangent of the declination.

And fo in the latitude of ${ }_{51} \mathrm{gr} .30 \mathrm{~m}$. you fhall finde that when the Sun rifeth, either at fiue in the Summer, or feuen in the Winter, his declination is 11 gr .37 m . when he rifeth at foure in the Summer, or eight in the Winter, his declination is $21 \mathrm{gr} .4 \mathrm{O} \cdot \mathrm{m}$. which may be alfo fet downe in the Table.

That done, you may there fee that in this latitude the meridian altitude of the Sunne in the beginning of \mathscr{T} is 62 gr . in I 58 gr .42 m . in 850 gr , in $\mathrm{V}_{3} 88 \mathrm{gr} .30 \mathrm{~m}$. \&c. But the beginning of T and v is reprefented by the tropiques T. D, drawne at 23 gr .30 m . of declination, and the beginning of $r_{\text {and }} \approx$, by the x guator εF. If you draw an occult parallell betweene the xquator and the tropique, at II $\mathrm{gr}_{\mathrm{r}} 30 \mathrm{~mm}$. of de-
clination,
clination, it fhall reprefent the beginning of \forall, ix, M, and \notin; if you draw an other occult parallell through 20 gr .12 m . of declination, it thall reprefent the beginning of I, Ω, \mp, and $\approx \sim$. ${ }^{1}$ Then you may lay a ruler to the center A, and 62 gr . in the quadrant $B C$, and nore the point where it croffech the tropique of σ; then moue the ruler to 58 gr .52 m . and note where it croffeth the parallell of II ; then to 50 gr . and note where it croffeth the parallell of , and againe to 38 gr .30 m 。 noting where it croffeth the xquator ; fo the line drawne through thefe points fhall fhew the houre of 12 in the Summer, while the Sunne is in \vee, \succ, II, Ω, Ω, or 狍. In like maner if you lay the ruler to the center A, and 27 gr . in the quadrant, and note the point where it croffeth the parallel of \mathcal{X}; then moue it to 18 gr .18 m . and note where is crofleth the parallell of $\approx \sim$; and againe to 15 gr . noting where it croffeth the tropique of $v p$; the line drawne threugh thefe points fhall thew the houre of 12 in the Winter, while the Sunne is in $\bumpeq, M, 7, \nVdash, \ldots \approx$ and $\not \subset$, and f o may you draw the reft of thefe houre-lines: onely that of 7 from the meridian in the Summer, and 5 in the Wincer, will croffe the liue of declination at ${ }^{5 I} \mathrm{gr} .37 \mathrm{~m}$. and that of 8 in the Summer, and 4 in the W incer at 21 gr .40 m ,

The fourth table for drawing of the azimuth lines, mult ikewife be fitted for the altitude of the Sun aboue the horizon at cuery azimuth, efpecially when he commeth to the x quator, the tropiques, and fome other intermediate declination.

If the Sume be in the æquator, and fo have no declination:

As the fine of 90 gr . to the cofine of the azimuth from the meridian:
So the cotangent of the latitude,
to the tangent of the altitude at the æquator.
Thus in our latitude of $\mathrm{S}_{\mathrm{I}}^{\mathrm{gr}} \mathbf{\mathrm { g }} 30 \mathrm{~m}$. at 90 gr . from the meridian, the Sunne will haue no altitude; at 8ogr, the altitude Hhh
will be 7 gr .52 m ; 2t 70 gr . it will be 1.5 gr .30 m ; at 60 gr .it. will be 21 gr .4 lm .

Ifthe Sun haue declination, the meridian altitude will be eafily found as before, for the table for dayes and moneths. And for all other azimuths.

> As the finc of the latitude, to the fine of the declination:
> So the cofine of the altitude at the xquators to the fine of a fourth arke.

When the latitude and declination are both alike in alf azi: muths from the prime verticall vnto the ineridian, adde this fourch arke vnto the arke of altitude at the æquator:

When the latitude and declination are boch alike, and the azimuth more then 90 gr. diftant from the meridian, take the altitude at the æquator our of this fourth arke.

When the latitude and declination are vnlike, take this fourth arke out of the arke of altitude at the aquator, fo fhall you haue the altitude of the Sun belonging to the azimuth.

Thus in our latitude of 51 gr .30 m . Northward, if it were required to finde the altitude of the Sunne in the azimuth of 60 gr . from the meridian, when the declination is $23 \mathrm{gr} \cdot 30$ 3m. Northward, you may finde the altittde at the x quarn belonging to this azimuth to be $21 \mathrm{gr} .4^{11} \mathrm{mz}$ by the former Ca non, and: by this laft Canon you may finde the fourth arke to be 28 gr .15 mm . Then becaufe the lativude and declination are both alike to the Norrhward, if you adde them both together, you fhall haue 49 gr .56 m . for the altitude required.

If the declination had been 23 gr .30 mm . to the Southward, you fhould then hane aken this tourth arke out of the ark at the xquator, which becaite it cannot here be done, it is at a ifgne that the Sunne is not then aboue the horizon. But if you take the arke at the æguator out of this fourth arke, you thall haue 6 gr .34 m . for the altitude of the S anne when he is

o MRadisi Me Cotan. lat: O A Cofr.azim. AB Tax.equa.

EZ Sintlat. $Z \mathcal{B}$ Cof. $A B$. DS Sin. decii. SB Sir, arc.4:
rables for she a titude of the suan in the beginning of cosb figne for euery temblb aximuth.
 $5633063146223|60545842| 5532|5125| 46 \quad 2|3917| 3122$

 $\sqrt{140} 0|3934| 3815|360| 3244|2820| 2245 \mid 16$ ol $817 \mid 00$

$$
\text { Lat. } 51 \quad g^{r}
$$

(5] $62306214|6122| 5954|5740| 5+355027|45 \quad 83833| 3053$ [II $59125854|5759| 5623|540| 50434622415134 \quad 6: 2623$

 2p|15.301454|1310120 $12|558| 025|623| 1410 \mid 22331$

$$
\text { Lat. } 52 \quad G r_{0}
$$

 $8 \mid 493049$ O| $48 \quad 3|46114326| 2944|2458| 29612215 \mid 1440$

 ina table.

Lafly when the Sun rifeth or fetteth vpon any azimuth, to. find his declination.

As the fine of 90 gr .
to the cofine of the latitude:
So the cofine of azimuth from the meridian, to the fine of the declination.

And thus in our latitude of 51 gr .30 m , when the azimuth is 80 gr . from the meridian, the declination will be found to be 6 gr .12 m ; if the azimuth be 70 gr . the declination will be. found 12 gr .18 m ; if 60 gr then 18 gr .8 m . And fo for the $r \in \AA$, which may be alfo fet downe in the Table.

A Table for the allitude of the Sunne in the lginning of each figne for cuery tenth azimath, in 5 I $g r$. 30 m . of North latztude.

Tha:

That done, if you would draw the fine of Eaft or Weft, which is 90 gre from the meridian, lay the suler to the center A, and $30 \mathrm{gr} .38: m$ numbred in the guadrane from C to ward \mathcal{B}, and note the point where it croffeth the tropique of ${ }_{5}$; shen monc heifner to 26 gr r. 10 m .and note where it crolfeth the parallellof in then to 14 gr .45 m . and note where it croffe h the paraltell of b; then ro gr .0 m . and you thall find it to crofle the equatour in the point $\overline{\mathrm{F}}$; fo a line drawne through thefe points, fhall hew the azimuth belonging to Eaft and Weft. The like reafon holdeth for all the reft.

Thefe lines being thus drawne, if you fet two fights vpon the line $A C$, and hand a thread and plummet on the center, A with a bead vpon the thread, the forefide of the quadrant thall thall be fully finifhed.

On the backfide of the quadrant you may place the Nocturnall deícribed before in the vfe of the Sector pag. which confifteth of two parts.
The one is an houre-plane diuided xqually according to the 24 houres of the day and each houre into quarters, or minutes as the plane will beare. The center reprefents the North pole, the line drawne through the center from XII to XII, ftands' for the meridian and the lower XII ftands for the houre of XII at midnight.

The other part is a rundle for fuch farres as are neere the north pole together with the twelue moneths, and the dayes of each monech fitted to the-right alcenfion of the Sumne and. ftares this in manner.
Firlt confider where the Sun will be at the beginning of the $5,10,15,20,25,30$, and if you will ewery day of each moneth, and finde the right aicenfion belonging to the piace of the fun as I fhew before Pag.

For example the fun at midaight the lalt of December or beginning of January will be commsunibus annis about 20 gr. 40 m . of ψ_{0} whole right afcenfion is $29^{2} \mathrm{gr} .20 \mathrm{~m}$. At midnight the laft of lanuary or beginning of February he will be about 22 gh .12 m . of mm whofe right afcenfion is 324 gr .35 m , and fo the reft which may be fet downe in a table,

That done confider the longitude and latitude of the ftarres and thereby finde their right afcenfion and declination as I fhew before, Pag. and fet them downe in a Table. There Tables thus made, let the vtrermoft part of the randle be made euen with the innermoft circle of the houre-plane, and a conuenicrit face allowed to containe the devifions tor the dayes and names of the moneths. Then day the center of this rundle vpon the center of fome other circle divided into $360 . \mathrm{gr}$. and by the center and 292 gr . 20 m . in that circle draw a line for the beginning of lanuary. In like maner bythecenter and 324 gr .35 m . draw a line for the end of January and beginuing of February, and fo the reft of the dayes of each moneth.
For the infription of the farres let one of the lines from the center as that at the begmning of Iuly, or rather let a moueable index be diuided from the center toward the inward circle of the moneths into 40 gr . more or leffe, which may be done for fpeed equally, but for exactneffie in fach maner as the femidiametcr of the generall Aftrolabe was divided before, Pag. So laying the Index to the iight afcenfion in the outward circle you may prick downe the ftarres by their declination in the Index.
For example, if ithe right afcenfion of the pole-ftarre be 6 gr .28 m . end his decination 87 gr . 20 m . hauing fit the center of the Index both to the center of the rundle and of the other circle, turne the Index to 6 gr .28 m , in that cutward circle, and prick downe the Itarre by 87 gr .20 m. in the edge of the Index, that is ac the diftance of 2 gr .40 m . from the pole. The like reafon holdech for the reft of the flarres, which may be diftinguifhed according to their magnitudes, and then be reduced into their formes, as in the eexample. So the quadrant will bee fitted both for day \{and night.

CHAP. II.

Of the rofe of the Quadrant in taking the altitude of the Sumne, Moone, and Starres.

THe Quadrant is the fourth part of a circle, diuided egra!-
 to 90 gr . each degree being fubdiuided into 4.

Lift vp the center of the Quadrant, fo as the thread with the plummet may play eafily by the fide of it, and the Sunne beames may paffe through both the fights; fo fhall the degrees cut by the thread, thew. what is the altitude at the time or obferuation, as may appeare by this example.
Vpon the 14 day of Aprill, about noone, the Sun-beames palfing through both the fights, the thread fell vpon 5I gr: 20 m and this was the true meridian altitude of the Sunne for that day in this our latitude of $51 \mathrm{gr} \cdot 30 \mathrm{mo}$. for which this Quadiant was made.

Againe, towards three of the clock in the afternoone, the thicad fell vpon 38 gr .40 m.and fuch was the Sunnes altitudo at that time.

CHAP.

CHAP. III.

Of the Ecliptique?

1 The place of the Sunne being gisen to finde his right afcenfion.

THe Ecliptique is here reprefented by the arke; figured with the characters of the twelve. Signes, $r, \gamma, I, \& c$. each Signe being diuided vnequally into 30 gr . and they are to be reckoned from the character of the Signe.

Let the thread be laid on the place of the Sunne in the Ecliptique, and the degrees which it cutteth in the Quadrant fhall be the right afcention required-

As if the place of the Sunne giuen be the fourth degree of II, the thread laid on this degree hall cat 62 degrees in the Quadrant, which is the right alcenfion required.
But it the place of the Sunne giaen be more then 90 gr . from the begining of r, there mult be more then 90 gr .allowed to the right afcenfion; For this inftrument is but a quadrant : and fo if the Sunne be in 26 gr . of σ, you thall find the thread to fall in the fame place, and yet the right afcenfion to the 118 gr.

> 2 The right afcention of the Sunne being given, to finde bis place in the Ecliptique.

Let the thread be laid on the right afcenfion in the Quadrant, and it thall croffe the place of the Sun in the Ecliptique, as may appeare in the former example.

C H A P. IIII.

Of the line of declination.

I The place of the Sunne being given to finde
his declination.

THe line of declination is here drawne from the center to the beginning of the Quadrant, and divided from the beo ginning of \cdot downward into 23 gr .30 m 。
Let the thread be laid, and the beade fet on the place of Sunuc in the ecliptuque; then moue the thread to the line of declination, and there the bead fall fall upon the degrees. of the declination required.
As if the place of the Sunne given be the fourth degree of II, the bead firf fet to this place, and then moued to the line of declination, fhall there fhew the decliation of the Sunne at that time to be 21 gr. from the x guator.

2 The declination of the Sunne being given, tofixde bis place in the Ecliptrigue.

Let the thread and beade be firf laid to the declination, and then moued to the Ecliptique.
As ifthe declinatiou be 21 gr. the bead firt fee to this declination, and then moued to the ecliptigue, fhall there fhew the fourth of II, the fourth of 7 , the 26 of 5 , and the 26 of appeare by the quarter of the yeere.

CHAP. V.

Of the circle of Moneths and Bayes.

THis circle is here reprefented by the arke, figured with thee letters: $I_{3} F, M, A M, \& c$. fignifying the moneths January, February, March, A prill, \&c. each moneth being divided unequally, according to the number of the dayesthat are therein.
A Table for the infoription of the monet hs in the Nocturnall.

The rye of the circle of mononetbs and dayes:

1 The day of the moneth being given, to finde the altitude of the samneat noont.

Iet the thread be laid to the day of the moneth, and the degrees which it cutcth inthe Quadrant Chall bethe meridi an altitude required.

As if the day giuen be the 15 of May; the thread laid on this day fhail cut 59 gr .30 m . in the quadrant, which is the meridian alritude required.

2 The meridian altitude being given, to firde the day of the noneth.

The thread being fet to the meridian altitude, doth alfo fall on the day of the moneth.

A sif the altitude at noone be $59 \mathrm{gr}_{3} 30$, the thread being fet to this altitude, doth fall on the 55 of May, and the 9 of Iuly; and which of thefe two is the true day, may be knowne by the quarter of the yeere, or by another daye obferuation. For if the altitude prout greater, the thread will fall on the 16 day of May and the 8 of tily': "orif itt photie kefier, the thread will fall on the $\mathbf{r} 4$ of Mray wat the mo ofluly; whereby the queftion is fully anfwered.

CHA Pbovitanisar! os beco ari?

THat arke which is drawne von the cenfer of the quat drant by the be ginning of declihation, doth fere "copefent the xquatorsithatarke whichisdrawie by z3 gro. 30 青. 30

Iii 2
of declination, and is next aboue the circle of moneths and dayes, reprefenteth the tropiques: thofe lines which are betweene the aquator and the tropiques, being vadivided and numbred at the equator by $6,7,8,9,10,11,12$ at the tropique by $1,2,3,4, \& \mathrm{c}$. do reprefent the houre-circles : that which is drawne from 12 in the aquator to the middle of Iune, repres fenteth the houre of $1 \mathbf{1}$ at noone in the Summer ; and hofe which are drawn with it to the right hand, are for the houres of the day in the Summer, and the houres of the night in the Winter. That which is drawne from 12 in the aquator to the middic of December, reprefenteth the houre of 12 in the Winter ; and thufe which aredrawne with it to che left hand, are for the houres of the day in the Winter, and the houres of the night in the Suminer, and of both thele, that which is drawne from II to 1 , ferves for it in the forenoone, and in the afternoone. That which is drawne from to to 2 , ferues for $x 0$ in the forenoone, and z in the afternooie: for the Sunne on the fane day is about the fane height two houres before noone, as two houres after noone The like reaton holdeth for the reft of the houres.

> 1 The day of the moseth, or bhe beight at noose being, knowne, to finde the place of the Suane: onitfe Ecliptiance.

The thread being laid to the day of the moneth, or the beight atnoone, (for one givesthe other by the former propoficion) marke where in croffech the houre of $\mathbf{5 x}$, and lie the bead to that interfection? then move the thread till the beade fall on the ecliptigue, and it thall fall on the place of the Sunne.

As if the day giumbethe Hy May or the meridian altitu ie 59 gr .30 m . lay the thread accordingly, and put the head sothe jaterieftonot the rhread with the houre of 12 ; then moue the pleread sill the bead tall on the ecliptique, and if fhall here quew the fourth of x, the sfourth of F, the 26
of 5 , and the 26 of 40 ; and which of thele is the place of the Sunne, may appeare by the quarter of the yeare, or another dayes obleryation.

2 The place of ibe Sunne in the Ecliptique being knowas. to finde the day of the moseth, foc.

Let the thread and bead bee firft laid on the place of the Sunne in the Ecliptique, and then moued to the line of 12.

As if the place of the Sunne ginen be the fourth of Ir , the bead being laid oo this degree, and then moued to the houre of 12 , in the Summer, the thread will fall on the 15 day of May, and the 9 of luly; or if ic be moved to the houre of 12 in the Winter, the thread will fall on the 6 of Ianuary and the r6 of Nouember; which of thefe is the day of the moneth required, may appeare by the quarter of the yeare.

Inthis and the former propofitions, you haue two wayes to rectifie the bead, by the place of the Sunne, and by the day of the moneth; the better way is by the place of the Sunne, for in the other the Leap.yeare may breed fome fmall difference.

There is yetarhird way. For the Sea-men hauing a table for the declination on each day of the yeare, may fet the bead: shereto in the line of declination.

4 The houre of the day being givento find the altitude of the Sunne aboue the horizon:

The bead being fer for the time by either of the thice wayes, let the thread be moved from the heure of 12 toward the line of declination, till the bead fall on the houre giuen; and the digrees which it cuts in the Quadrant, fhall fhew the alcitude of the Sunne at that time.

As if the time giuen be the tenth of Aprill, the Sunne be1ii 3
ing then in the beginning of \Varangle, the bead being reified, you Shall find the height at lone 50 gr .0 m . at 1 I in the moreming 48 gr . 12 m . at 10 but 43 gr .12 m . at 9 but 36 gr . at 8 but 27 gr . 30 m . at 7 but 18 gr . 18 m . at 6 but 9 gr . at 5 ic meeteth with the line of declination, and hath no altitude at all, and therefore you may think it did rife muchabout that hours.

Then if you moue the thread again from the line of declination toward the houre of 12 , you that find that the Sine is 8 gr .33 m . below the horizon at 4 in the morning, and mere 16 gr .at 3 , and 21 gr . 5 m m. at 2 , and 25 gr . 40 mr . at I_{3} and 27 gr at midnight.

4 The altitude of its sump being given, to fronde the boure of the day.

The altitude being obferued as before, let the bead bee feet for the time, then bring the thread to the altitude, fo the bead Shall thew the houre of the day.

As if the 10 of April having fer the bead for the time, your shall find by the quadrant, the altitude to bee 36 gr . the bead at the fame time will fall upon the houre-line of 9 and 3: wherefore the hour is 9 in the forenoons 3 or 3 in the afterno one. If the a titude be neese 40 gr . you foal find the bead at the fame time to fall halle way betweene the houre-line of 9 and 3 , and the houre-line of 10 and 2 : wherefore it must be either halic an hours past 9 in the morning, or hale an houre pat 2 in the afternoons; and which of there is the true time of the day, may be foone knowne by a fecond obferuation: for if the Sane rife higher, it is the forenoons; if it become lower, it is the afternoone.

5. The boure of the night being giuch, to find how much the Surne is bilo.v the borizon.

The Sunne is alwayes fo much below the horizon at any houre of the night, as his oppofite point is aboue the horizon at the like houre of the day; and therefore the beade being fer, if the queftion be made of any houre of the night in the Summer, then moue it to the like houre of the day in the Winter; if of any houre of the night in Winter, then moue it to the like houre of the day in Summer; fo the degrees which the thread cutteth in the Quadrant, hall hew how much the Sun is below the horizon at that time.

As if it be required to know how much the Sunne is below the horizon the 10 of Aprilat 4 of the clocke in the morning ; the bead being fet to his place according to the time in the Summer houres, bring it to 4 of the clocke in the afternoone in the Winter houres, and fo chall you finde the thread to cu: 8 gr . and about 30 m , in the quadrant; and fo much is the Sua below the horizon at that time.

6 The depressias of the Sunnefuppofed, to give the bowe of the night with vs; or the houre of the
day to our CAntipodes.
Here alfo becaufe the Sunne is fo muchaboue the horizon at all houres of the day, as his oppofite point is below the horizon at the like houre of the night: therfore firft fet the bead according to the time, then bring the thread to the degree of the Suns depreffion below the horizon, fo fhall the bead fall on the contrary h ure-lines, and there fhew the houre of the night in regard of vs, which is the like houre of the day in regard of vs, which is the like houre of the day to our Antipodes.

Asifthe 10 of April the Sunne being then in the beginning in the Eaft, it be required to know what time of the might it is; firft fet the bead according to the day in the Summer houres, then bring the thread to 8 gr .30 m . in the quadrant, fo fhail the bead fall among the Winter houres, on the line of 4 of the clocke in the afternooize: wher fore to our Antipodes it is 4 of the clocke in their afternoone, and to vsit is then 4 of the clocke in the morning.

> 7 The time of the yeare or the place of the Sunne being gimen ${ }_{2}$ to find the beginsing of day-breake, and end of twi light.

This propoficion differeth little from the former: for the day is faid to begin to breake, when the Sun cometh to be but $: 8 \mathrm{gr}$. below our horizon in the Eaft, and twi-light to end when it is gotten 18 gr . below the horizon in the Weft: wherefore let the bead be fet for the time, and then bring the thread to 18 gr . in the quadrant, fo thall the bead fall on the contrary houre-lines, and there fhew the houre of twi-light as before.

So if it be required to know at what time the day begins to breake on the tenth of April, the Sun being then in the beginning of \succ; firft fet the bead according to the time in the Summer houres, and then bring the the thread to 18 gr . in the quadrant, fo fhall the bead fall among the Winter houres a little more then a quarter before 3 in the morning; and that is the time when the day begins to breake vpon the tenth of April.

CHAP.

The vee of the Horizor.

CH"AP.VII.

Of the Horizon.

THe Horizon is here reprefented by the arke drawne, from the beginning of declination towards the end of Fi biuary, diuided vnequally, and numbred by 10. 30. 30. 40. \& C.

> 2 The day of the moneth, or the place of the Sumne being knowne, to finde the amplitude of the Sunnes rifing and jetting.

Let the bead rectified for the time, be brought to the ho: rizon, and there it fhall fhew the amplitude required.

As it the day giuen bee the 15 of May, the Sunne being in the fourth degrec of $I I$, the bead rectified and brought to the horizon, fhall there fall on 35 gr .8 m . fuch is the amplitude of the Sunnes rifing from the Eaft, and of his ferting from the Weft; which amplitude is alwayes North when the Sunne is in the Northerne fignes, and when he is in the Souththerne fignes alwayes Southward.
a The day of she moneth, or the place of the Sunne being giuen, to finde the afcenfionall differeace.

Let the bead rectificd for the time, be brought to the horizon, fo the degrees cut by the thread in the quadrant, thall Thew the difference of afcenfions.

As if the day giuen be the 15 of May, the sunne being in the fourth degree of $\overline{5}$, let the bead be rectified and brought Kkk afcenfionall difference to be 28 gr . and about 50 m .

Vpon the aicenfionall difference depends this Corollatie.

To find the boure of the rifing and fetting of the Sun. and thereby ibe length of the day and night.

The time of the Sunnes rifing may be gueffed at by the 3 of the laft Cap. but here by the aicenfionall difference it may be better found, and that to a minute of time. For it the afcenfionall difference bee conuerted into time, allowing an houre for 15 gr . and 4 minutes of an houre for each degrec, it fheweth how long the Sun rifeth before fix of the clocke in the Summer, and after fix the Winter.

Asif the day giuen be the 15 of May, the Sun being in the fourth of II, and his afcenfionall difference found as before $28 \mathrm{gr} .50 \mathrm{~m}_{3}$ this conuerted into time, maketh I h . and fomewhat more then 55 m. of an houre : wherfore the Sun at that time, in regard it was fummer, role a bo. and full 55 m . before 6 of the clocke; and fo hauing the quantity of the lemidiurnall arke, the length of the day and night need not be vas knowne.

CHAP.VIII.

Of the fiue Starres.

IMight haue put in more farres, but theie may fuffice for the finding of the houre of the night at all times of the yeare: and firt I make choice of Ala Pegafi, a ftarre in the extremity of the wing of Pegafies in regard in wants but 6 minutes of time of the beginning of r; but but becaule it is but of the fecond magnitude, and not alwayes to be feene, I made choice of foure more, one for each quarter of the Eclip-
tigurs

To find the houre of the might by the farres.

eique, as Oculus $ช$ the Buls eye, whofe right alcenfion con uerted into time, is 4 ho .15 m ;then of $\mathrm{Cor} \Omega$ the Lions hearts whofe right aicenfion is 9 bo. 48 m ; next of Arcturus, whofe right afcenfion is 13 H .58 m ; and laftly of Aquila, or the Vultures heart, whofe right afcenfion is is H. 33 ms. Thefe fiue ftarres hauc all of them Northerne declination; and if any others, fome of thele will be feene at all times of the yeere.
The vee of them iś,

The altitude of any of there fine Starres being krowne to fird the houre of the night.

Firft put the beade to the ftarre which you intend to ob: ferue, take his alticude, and firde how many hourcs he is from the meridian by the foarth Prop. of the fixt Chap; then ous of the right afcenfro of the flarre, take the right afcenfion of the fun coni erted into houres, and marke the difference; for this difference beng added to the obferued houre of the farre from the meridian, fhall fhew how many houres the funne is gone from the meridian, which is in effect the houre of the night.

As if the 15 of May, the fun being in the fourth of II, I fhould fet the beade to Arcturrus, and obieruing his alcitude Thould find him to be in the Weft about 52 gr . high, and the bead to fall on the houre-line of 2 afternoone, the houre would be in ho. 50 m . palt noone, or 10 m . hort of midnight.

For 62 gr . the right afcenfion of the funne, conuerted into time, makes $4 \mathrm{bo}$.8 m . which if we take out of $13 \mathrm{ho}$.58 m . the right afcenfion of Arcturus, the difference will be 9 bo. 50 m . and this being added to 2 ha . the obferued diftance of Arctarss from the meridian, fhewes the houre of the night to be I k 0.50 m . Another example will make all more plaine.

If the 9 of Iuly the funne being then in 26 gr . of 5 , I should fet the beade of O culus \forall, and obferuing his altitude Thould find him to be in the Eaft about 12 gr . high, and the bead to fall on the houre-line of σ before noone, which is Kkk 2

18 ho , paft the meridian, the houre of the night would be better then a quarter paft 2 of the clocke in the morning.

For 118 gr . the right afcenfion of the Sun, conuerted into time, makes 7 ho. 52 m ; this taken out of 4 ho .15 m . the right afcenfion of O culus ૪, adding a whole circle, (tor orherwife there could be no fubltraction) the difference will be 20 ho. 23 m . and this being added to 18 ho . which was the obferued diftance of O culus 8 from the meridian, fhewes that the Sun (abating 24 bo. for the wholecircle) is 14 bo. 23 ms . paft the meridian, and therefore 23 m .paft 2 of the clocke in the morning.

If the \mathbb{N} octurnall bee placed on the backfide of the quadrant you may auoid this equation of right afcenfions. For knowing the time of the.yeere when the ftarre will be in the fouth at midnight you may bring that time to the howre obferued, then will the day of the moneth wherein you made the obleruation point at the houre of the night reguired.

As in the firft example wbere on the 15 of May the bead fet to Arcturus fell on the hoare-line of 2 atternoone, becaufe Arcturus will be in the fouth the 14 of October compleat at midnight you may place the 14 of OAober at the houre of 2 , fo the 15 ot Ma y will point to I bo. 50 min.
In the fecond example, where the 9 of Iuly the bead fet to the Bulls eye fell on the houre-line of 6 before noone, becaufe the Bulls eye will be in the fouth the 76 of May conpleat at midnight you may tourne the 16 of may to the houre of 6 , and fo you fhall finde the 9 of Iuly to point to $2 \mathrm{ho.23}$ mis. as ber fore.

C HAP。

CHAP. IX.

Of the Azimuth-lines.

THofe lines which are drawne betweene the æquator and the tropiques, on chat fide of the quadrant which is neareft vito the fights, and are numbred by $\mathbf{1 0 . 2 0}$. 30. \&c. doe reprefent the azimuths, the vttermoft to the left hand reprefenterh the meridian, that which is numbred with ro the tenth azimuth from the meridian, and that which is numbred with 20 the twentith, and fo the reft. Thofe lines which are drawne from the aquator to the left hand, doe Shew the azimuth in the Summer; and thofe other to the right hand, doe flew the fame in the Winter. The vle of them is.

> I Ihe azinsuth whereon the Sunne beareth from ws being knowne, to find the altitude of. the San abose the borizon.

Firft let the bead be fet for the time, as in the former Chap-: ter, then mone the thread vnill the bead fall on the azimuch; fo the de grees which the thread cutteth in the guadrant, Mall fhew the altitude of the Sun at that time. Where you are to obferue, that feeing the azimuths are drawne on the right fide of the quadiant, you are alfo to begin to number the degrees of the Sumnes alriviude from the right band toward the left. As if the fights had been fer on the line $A \mathcal{B}$, and you had turned your right hand towards the Sun in obferuing of of his altutudes contrary to our practife in the former Chapter.

As if the time giuen were the 2 of Augult, when the Sun hath about 15 gr . of North declination, you may fet the bead tor the time, fo you fhall find the height at noone when the Kkk 3 .

Sun is in the fouth, to be 53 gr .30 ns . when he is 10 gr . from the fouth 53 gr . 10 m when 20 gr .then about 52 gr .8 mm . when 30 gr . then 50 gr .20 m . when 40 gr . then 47 gr .48 m . when 50 gr . then 44 gr .12 m . when 60 gr othen 39 gr .35 m . when 70 gr . then 33 gr .50 m . when 80 gr . then 27 gr when he is in the Eaft or Weft 90 gr . from the meridran, then is the height neare $19 \mathrm{~g}^{\mathrm{r}} .20 \mathrm{~mm}$; when he comes to be 100 gr . then I $\mathrm{gr}_{\mathrm{o}} 15 \mathrm{~m}$ when I 10 gr .then 3 gr .20 m ; and before he mommeth to the azimuth of 120 gr . he hach no altitude. For the fun hauing 15 gr . of North declination, will rife and fet at In $\mathrm{g}^{r} \cdot 34^{\text {ms. from the ureridian. }}$

2 The altitside of the Sun being gisen, to find on what azimuth be beareib from us.

Let the beade be fet for the time, and the altitude obferwed as before; then bring the thread, to the complement of that altitude, fo the bead thall thew the azimuth required.

As if the fecond of Auguft, hauing fet the beade for the cime, you fhall find the altitude of the fun to be 19 gr .20 m . remoue the thread vnto 70 gr .40 m . the complement of the altitude ; or, which is all one, to 19 gr .20 m . from the righe hand toward the left, and the bead will fall on the line of 90 gr . from the meridian. And therefore the point whereon the funne beareth from vs, is one of thefe two, either due Ealt or due Weft. And which of thefe is the true point of the compaffe, may be foone knowne by a fecond obleruation: for if the funne rife higher, it is the forenoone; if it be lower; it is the afternoone.
By knowing the azimuth or point of the compaffe! whereon the funne beareth from vs, it is eafy to find,
> A meridias line, and thereby The coafting of the Countrey.
> The fite of a luilding.
> The variation of the Compaffe.

As if the fecond of Augult in the afternoone, 1 hould find by the height of the fun that he beares from me 60 gr . from the meridian toward the Weft : then there being 90 gr . belonging to each quarter, the Weft will be 30 gr . to the right Hand; the Eaft is oppofi:c to the Weft, the North and South lie equally betweene them.

C H A P. X.

of the Quadrat.

TH E Quadrat hath two fides diuided, theother two fides next the Center may be fuppofed to be diuided, each of them into 100 equall parts: of the fides diuided, that which is next the horizontall line containes the parts of right fhadow, the other next the fights, the parts of contrary fhadow: The vle of the Quadratis,

1 Arsy point being gisen, to finde whetber it be beucll with tbe eye.

Lift vp the center of the guadrant, fo as the thread with the plummet may play eafily by the fide of it: then looke through the fights to the place giuen : for now if the thread. fhall fall on $A B$ the horizontall line, then is the place giuen leuell with the eye : but if it fhall fall within the faid line on an ny of the diuifions, then it is higher : if without, then it is lower then the leuell of the eye.
2. To find an beight aboue the lewell of theeye, or a diftance at one obfermation.
Looke through the frghts to the place, going nearer or far: ther from it, till the threadfall fall on 100 parts in the quadrat or 45 gr .in the quadrant, fo thall the height of the place aboue the leuell of the eye., be cquall to the diftance betweene the place and the eyc.

If the thread fall on so parts of a right fhadow, the height is but halfe thediftance: if it fall on 25 , it is a quarter of the diftance : if on 75 , it is three quarters ot the diftance. For as oft as the thread falleth on the parts of right Chadow,

As roo to the parts on which the thread falleth : So is the diftance to the height required.
And on the contrary,
As the parts cut by the thread are to $\mathbf{1 0 0}$: So the height vnto diftance.
But when the thread fhall fall on the parts of contrary fha downe: if it fall on 50 parts, the height is double vnto the diftance; if on 25 , it is foure times as the diftance. For as oft as the thread falleth on the parts of contrary fhadow,

As the parts cut by the thread are vnto $\mathbf{I c o :}$ So is the diftance vnto the height.

And on the contrary,
As 100 are vnto the parts ciut by the thread : So is the height vnto the diftance.

And what is here faid of the height and diftance; the fame may be vnderfood of the height and hadow.

3: To finde a beight or a diffacce at two obferuations.

As if the place which is to bee meafured might not otherwife bee approached, and yet it were required to finde the height B C , and the diftance : firf if I make choice of a ftation at A , where the thread may fall on 100 parts in the quadrat, and 45 g r, in the quadrant, the diftance A B will bee equall to the height B C; then if I goe farther in a direet line with the former diftance, and make choice of a fecond fation at D , where the thread may fall on 50 parts of right fhadow, the diftance B D would bee double to the height BC: wherefore I may meafure the difference betweene the two flations A and D , and this difference D E will bee equall both to the diftance A B and the hcight $A B$.
Or if icannot make choice of fuch flations, I take fuch as I may, one at D , where the thread falleth at 50 parts of right Thadow; the fecondat E , where if fallerh on 40 parts : and fuppofing the height BC to bee $\mathbf{1 0 0}$, I find that

As 50 parts are vnto 100 , the fide of the quadrat: So 100 the fuppofed height, vnto 200 the diftance $B D$, And as 40 parts, at the fecond fation, vnto 100 : So 100 the fuppofed height, vnto 250 the diftance B E.

Wherefore the difference betweene the flations D and E fhould feeme to bee 50 ; and then if in the meafuring of it; 1 hhould finde it to bee either more or leffe, the proportion will hold, as from the fuppoled difference to the meafured difference, fo from height to height, and from diftance to difance.

As if the difference between the two fations D and E be"ng meafured, were found to be 30 . So roo the fuppored height, vato 60 the rrue height. And 200 the fuppofed ditt nace, varo izo the true ditäce: And 250 at the lecond Itation, vato 5 jo the diftace B E.

The like reafon holdeth inall other exa nples of this kind: and if an Indexwith fights were fitted to turne vpon the Cenrer, it mighe then ferue by the fame reafon for the finding of all other diftances.

$$
E I N I S
$$

THE
 GENERALL VSE.

 OF THE
CANON AND TABLE

 of Logarithmes. Ogarithmetique is a Logicall kinde of Aritmetique, or ariticicall vie of numbers irver ted for the eafe of the calculation wherein each number is firted with an Artificiali, and thele aruficiall numbers fo orderd, that what is produced by multiplication of naturall numbers, the lame may be cffected by the addi io of thefe their artifi. alll rumber: ; what they performe by diuifion, the fame is he, e done by fubtration: and fo the hardeft pa t of calcuiation aucided by an ealy proSthapharefis.

All this thall be made plave by applying that to thefe Artificiail numbers, whith have fet downe before for the vee of my Lincs of numbers fines and Tangents in the ore of the ccator and Croffetaf. Whee cin the icader is to obferue chat, what is to be wr cugh by rouxd numbers only, is beft done by M. Triggeishis Logarithmessbut the aftronomi- call part concerning arkes and angles, by my Canon of Artio: ficiall fines and Tangents.

CHAP. I.

Concerning the reve of the line of \mathcal{N} umbers, 1 Set downe ten generall Propofitions in the rofe of the (roffeltaff. p. 18. and thefe may bee. applied to the table of Logaritlmes.

$$
\mathrm{P}_{\mathrm{r}}^{\mathrm{of}} \mathrm{p} . \mathrm{I} .
$$

To multiply one number by another.

THis is the VI. Propofition of the ren : but I begin with the cafielt, adde the Logarithme of the multiplicator to the Logarithme of the multiplied, the fumme of both hall be the Logarichme of the product.

As when we multipl, 25 by 30 the product is
750 fo here adde the Logarithme of 25 viz.
to the Logarithme of 30
1397.94001
the fumme of both will be 1477. 12125
2855.06126 And this is the Logarithme of 750.

In like manner, if we multiply 10 by 10 the prod. is 100. if 100 , by 10 ; the produ.t is 1000 .

The Lingarithme of 10 being
The Logarithme of 1000 fhall be
$1000 \quad 3000.00000$
$10000 \quad 4000.00000$

100000
5000. 0000

And fo forward: All intermediate numbers which haue intermediat e Logarithmes.

If we multiply roi by 10 , the product is 1010 of 102 by xo the product is 1020 :

The Lugarithine of ro viz.
fo here
added the Log. of ior
10vo. 00000
giues the Log. of 1010
The fame Logarithme of 10
added to the Logarithme of 102
giues the Logarichme of 1020
2004. 32137
$3004 \cdot 32137$
1000.00000
2008. 60017
3008. 60017

The difference being oniy in the fist figure, and that is alwayes leffe by one then the number ot places, in the number giuen. As when we find the Logarithme to be - 200860017 the filft figure, 2 , is characterufticall, i. the Index thewing that the whole number 102 belongıng to this Logarithme, confifts of three places. If he Logarithme had beene roo8. 60017 the whole number muft haue been 10. 2 confilting of : wo p aces, and the rcft a fraction of $\frac{2}{10}$.

If the Logarithme were - 0008.60017 the number belonging to it would be, 1.02. I. I and $\frac{9}{100}$ And this is one of the reaions why the differences were omitted in the firft hundred Logarithmes. All thofe Logarithmes may be tound afterwards vnder a larger Index.

Againe, if we multiply 20I. by 5 , the product is 1005: 1o here: if we adde the Logarithme of 5 vnto the Logarithme of 201, the fumme of both, fhall be the Logarithme of 1005 and the fumme of the Loga ithmes of 5 and 203 fhall be the Logarit hme of -ror 5. Thus the moft part of the table may becontinued beyond 1000 .

$$
\mathrm{P}_{\mathrm{R}} \mathrm{O}
$$

To diuide one number by another.

Subtract she Logarithme of the Diuifor out of the Logar rithme of the Diuidend, the Remainder, fhall be the Logas sithme of the Quotient.

Thegenerall ve of the Caxon.

As when we diuid 750 by 25 the quotient is $30: 50$ here from the Logarithme of 750 viz $\quad 2875.06126$ fubtract the Logarithme of 25
There remaines the Logarithme of $30 . \frac{1397.94001}{1477 \cdot 12125}$

In like manner when we diuide I .by 4 . he quotient is $2 \frac{3}{4}$ fo fere the Logarithme of 4 viz 0602.05999 taken from the logarithme of 11 1041.39269 leaues th Logarithoe of $2^{3} \quad 0439.33270$ wherefore, if : were required to find the Logarichme of a whole numbir with a fraction annexed (as one $2 \frac{3}{4}$) we might firft reduce it into an improper fraction of $\frac{4}{4}$ (or rather of 185) and then fubtract as before.

If it were required to find the Logarithme of a fingle fraCtion, as of 4 , we nlay lubtract as before: But this fraction being lfffe then I, the Logarithme muft be leffe then o. and therefore noted with - a defectiue ligne.

$$
\mathrm{PROP}, 3
$$

To find the Square root of a number.

Halfe the Logarithme of the number giuen is the full Logarithme of the Iquare Root.

So the Logarithme of 144 being , 2558.36249 the halfe thereot is.
1079.18124 the Logarithme of 12 : and fuch is the fquare Roo of $\mathrm{I}_{4} 4$.

Then by converfion having extracied the fquare Root, we bray foone finde the Logari hme.

As, the Ligarithme of 10,0000 being 1000.00000 the L gart hme of the fguare R. 316227 is 0500.00000 and for the Root of that 177827
and Table of Logarithmes.

$$
\text { PROP. } 40
$$

Iofinde the Cubigue Note of a number.

The third part of the logarithms of the number given is full Logarithme of the Cisbrque Roote.

So the Logarith of 125 is 2096.9100I
And $\frac{1}{3}$, the Logarithme of 5 0698.97000

- By the fane reason we may find the Biquadrate Rooted, by diuiding the Logarithme of the number given by 4 : the tolid Route, by dividing by 5 : and fo forward.

And by converfion, hawing extra\&ed the Roote, we may Cone fill the Logarithme.

As the Logarithms of $10.000 . \& c$. is 1000.00000
The Logar. of the Cub .R. 21544 . O333.33333
The Logarithme of
100.000, \& c. $\quad 200000000$ the Logarithme of the Cabique R. 4641. 0666.06666

Then multiplying the fe equate and Cubique Rooter one by another, we may produce infinite other numbers, and have all their Logarithmes.

$$
\text { PROP. } 5
$$

Thee numbers being given, to find a fourth Proportional.

This Golden Rule the mont vfffull of all others, may bee wrought feverall wayesas it appeares by this example: As 12 vito 24 fo 4 to a fourth number,

The

I: Tactus 2. \& 3. divifus per $\mathbf{I}_{\text {。 }}$

The ordinary way in Arithmerique is by multiplication and divifion. For firf they multiply the fecond into the third. and then diuide the product by the firt number giuen As here multiplying 24 by 4 , the Product is 96 , then diuiding 96 by 12 the Quotient will be 8 the fourth number here required.

According to this way we adde the Logarithmes of the fecond and third, and fubtract the Logarithmes of the firf, fo, that which remaineth, fhall be the Logarithme of the fourth number required.

Thus the Logarith. of the firf numb. 12 is 1079.18125 the Logarithme of the fecond $\quad 24 \quad 1380.21124$ the Logarithme of the third 400502.05999 the fumme of the fecond and third Logar. 1982.27123 fubtract the firft and there remaineth 0903.08998 And thus is the Logarithmes of 8. the fourth Proportionall.

A fecond way in Arithmetique is by divifion and multi-

2
Quotiens 2. per 1. diuifí multiplicatus in tertium, plication. For where the fecond number is greater than the firf, they may diuide the fecond by the firft, and then multiply the third by the quotient. As here dividing 24 by 12 the quotient is 2 : then multiplying 4 by 2 , the Product will be 8 .

According to this way we take the Logarithme of the fift out of the Logarithme of the fecond, and then adde the difference to the Logarithme of the third. So the fumme of this *ddition Shall be the Logaritinme of the fourth required.

A third way in Arithmetique is by divifion and divifion, for where the fecond number is leffe then the firft, they may diuide
diuide the firft by the fecond, and then againe divide the third by the quotient: As hereduriding iz by 40 the quotient is 3 : then diaiding 2_{4} by 3 . the quacient is 8 .

Atcording to this way we take the Logarithme of the fecond, out of the Logarithme of the firft, and then take the d fference out of the Logarithme of the third: So, that which remaineth thall be the Logarithme of the fourth namber reguired.

Thus the Logar. of the fiff numb. 12 is 1079.18125 the Logarithme of the fecond $4 \quad 0002.05999$
The difference decreafing,
fubitracted from the Legarithme of 24 gives the Logarithme of

Thefe two latter wayes by difference of Logarithmes, may be confidered as the fame. Though the:e be tome difference betweene them, yet that may eafily be riconciled, if we have regard to the naiure of the queftion. For three numbers being giuen in direct proportion, if the fecond be greater then the firft, the 4 , mult be greater then the third: If the fecoud beleffe then the firft, the 4 . muft bee leffe then the third, and their Logarithme accordingly. But in reciprocall proportion, confidering the firft and fecond numbers to be of one denomination, we are to obferue the concrary.

If we defire to turne fubtraction inio addition wee may take the Logarithme which is to bee fubtracted out of the Radius, and adde the complement. So the fumme of this addition, the Radius being fubrracted Shall give the required Logarithme as before.

Thus in the laft example; whore fubtracting the difference 477.12126. ou of 1380.21124 . the Logarithme of 24 we found the remainder to be 0903.08998 . the Logarithme of 8.

The Radius being

10000.00000
0477.12126
9522.87874
This

This added to the Logarithme of 24 giues vs a compound Logarithne

From this, if we fnbtract the Radius, (that is, if we cancell the firft figure to theleft hand) the reft is c903.08998 the Logarithme of 8 . the fourth Proportionall, as before.
By helpe of this fourth Proportional we may come fomewhat neere to finde a Logarithme for a number of 6 places.

As if it were required to finde a logarithme for this number 86862 , the table will affoord vs Logarithmes for a Iffer and a greater number ; and then the intermediate may be found by the part proportionall in this maner.

Here we have the Logarithme of $868 \quad 2938.51973$
and the Log. of the next following $869 \quad 2939.01978$
and the tabular difference betweene them 50005

If the Index be fitted to the number of places
the Logarithme of 868000 ihall be 5938.51973
and the Logarith. of $869000 \quad \because \quad 5939.01978$
the diffrence being $1000 \quad 50005$
Then taking 868000 , out of 868624 , (the number given) the third difference will be 624. And hauing thefe three differences the proportion will hold.
 portionall to be added to the lefier Logarithme 5938.51973 fo hall we haue 5938.83176 . for the logarithme required.

In like maner hauing a logarithme given, we may finde the value of it in a number of fixe places.

As if the Logar ithme given ware and it were required to find the number to whichit belongeth: This Logatithme is not to befound in the Table; but changing the Index and making it

and Table of Logarithmes:

Asth Tabular difference 50005 vito 100000
Sotheproperdiffeience 3^{1209} vtito 624II the part proportional! tote ioyned to the end of the former number 868: fo thall we have 86862411 . for the value of this Logarithme. But the Index of the Logarithme being 3. the number reguired muft confift of 4 places: viz. 8686 and the r it a fraction of $-\frac{z}{100}$.

This I fay is fomewhat neere the truth. For this number here propofed 86862_{4} is the fquare of 93^{2},

The true Loga, of the Root 932 is 2969.41592
The true Loga, of the Sguare $868624^{\circ} \quad 5938.83182$
Prop. VI.

Three nambers being giuen to finde a fourth in a daplicatid Propofition.

F. In queftions that hold in a duplicared proportion between Lines and Superficues, the Logarithmes tor lines giuen may be doubled, the Logarithmes for lines required may bee halted, and then the worke will be the tame as in the firft part of the former Propofition.

Suppofe, the Diameter being I 4 , the content of the circle was 154; the Diameter being 28 , what may the content bee?
H. re the queftion concerning both lines and fuperficies, I double the Logartthmes of the 2 lines giuen, and then worke as before in this maner.

The logarithme of 1_{4} is	1146.12803
thelogaritbme of 28	1447.15803
the fame againe	1447.15803
the logarithme of 154	2187.52072
the fumme of thefe laft	5081.83678
Subtract the double of the firft,	2292.25606
there remaines the logar of Gi6	2789.58072
Bbbb	And

And fuch is the content of the circle here required.
Suppofe the eontent of a Circle being 154, the Diameter of it was I_{4}; the content being 616 , what may the diameter be :

Here being one line giuen, and one line required, I double the Logarithme of the line giuen, and then working as before, the halfe of the remainder thall be the Logarithme of the line reguircd.

Thusthe loga. of 154 is	2187.52072:
the logarithme of 616	2789.58072
the logarithme of . 14	1146.12803
the fame againe	1146.12803.
the fumme of thefe lait	5081.83678.
fubsract the logarithme of the firt	2187.52072.
the remainder will be	289431606
the halfe thereof is	1447015803

Or according to the fecond maner of operation, the difference betweene the logarithmes of lines giuen may be dousbled; the difference betweene the logarithmes of the contentgiven may be halfed, and then the worke will be the fame as in the latter part of the former propofition.

So, in the firt queftion, where the Diameters were giuen and the content required.

The logarithme of ${ }^{4} 4$ the logarithme of 28	is	$\begin{aligned} & 1146.12803 \\ & 1447.15803 \end{aligned}$
the differenceincreafing		301.03000
the double of this difference		602.06000
added to the logar. of 154.		2187.52072
giues the lugarith. of 6×6		-2789.58072

In the fecond queftion, where the content of both the circles was knowne, and she Diameter of the!one rejuired.

$$
P \text { a } O \text { P. } 7
$$

Three numbers being giuen to finde a fourth in a triplicated proportion.

In quettions concerning proportion betweene Lines and Solids the logarithmes for lines given may bee tripled; the logarithmes for lines required may be diuded into 3. parts, and then the worke will be the fame, as in the firt way for the rule of Three.

Suppofe the Diameter of an Iron bullet, being 4 inches, the waight of it was 9 pound, the Diameter buing 8 . mehes, what may the waight be?

The logaritbme of the logarithme of	4 8	0602.05999 0903.08:99
the Triple of it		-2709.26997
thelogarithme of	9	0954.2425
the fumme of thefela		3663.51247
subtract the triple of ther	firft logar	1806.17997
there remaines the lo	ar. of 72	1857.33251

Suppofe the waight of an Iron bullet being 9 oound, the Diameter was foure inches; the waight being 72 pound, what may the Diameter be?

e of	0954.24251
Logarithme of 72	1857.33250
Logarithme of 4	0602. 0.5999
de double of this againe.	1.204. 11998
e fumme of thefe laft	3663.51247
At Log. lubitracted there remaines.	2709.26996
ird part ther	0903.08999

Or according to the fecond manner of operation in the rule of three, the difference betweene the Logarithmes of lines giuen may bee trip.ed; the difference betweene the Logarithmes of the lolidity or weight giuen may be diuided inte 3 parts.
So in the firf queftion, where the diameters were knowne, and the weight required.

The L.ogari hme of 4 is the Losarthme of 8
the difference encreafing 301.03000 the riple ot this difference.
added to the L ogarithme of giucs the Logarithme of 72

0662.05999
0903.08999
301.03000
903.09000
0954.24251
1857.33251

Inthi fecond queftion, where the weight was knowne, and the dianeter required.

The Logarithme of g is 0954.2425x
the Logarithme of $72 \quad 1857.32250$
the difference increafing
the third part of this difference
903.08999
added to the Logarithme of
giues the Logarithme of
301. 02599
$\frac{0602.05999}{0503.08998}$

$$
\mathrm{PROP} .8 .
$$

Hasing two numbers giuen to find a third in eastinuall pro. portion, fourth, a fifth, a fixt and fo forward.

According to the firt way in the rule of three, we may fubtract the Logarithme of the firlt number, out of double the Logarithme of the fecond, rhe remainder Chall be the Logarithme of the third, then fubtracting the Logarithme of the firft number againe out of the Logarthmes of the fecond and third, that is, out of triple the Logarithme of the fecond, the remaiuder fhall be the Logarithme of the fourth, and foforward.

As, when we fay: As 1 vnto 2, fo 2 vnto 4 : and 4 vnto 8; and 8 vnto $16 \& \mathrm{c}$. becaufe the firftnumber is 1 , there is no need of divifion, but onely to multiply 2 the fecond number into it felfe, the product gines the third proportionall number to be 4 : then multiplying 2 into 4 , the fourth proportionall is 8 : and muitiplying 2 into 8 the fifth proportionall is 16 ; and io forward. So here the Logarithme of the firt number being 1 , there is no need of fubrraction.

But, finding rhe Logarithme of 2 to be. 030 R: 02999 the double giues the Logarithme of $4 \quad 0602.05999$ the triple giues the Lo garithme of $8 \quad 0,903.08999$ the quadruple giues the log. of $6, \quad 1204$: 11998 and fo forward in infisinituri.

In all orher numbers that begin not with r , wee may eitherfubtratt the Logarithme of the firf number, onadde the complement vuto the Radius.

As when the numbersgiven are 100 and 108.
The Logarithme of the firft N. 100. is 2000.00000 the Logarithme of the fi cond 108 -2033.42376 the double of thisficond Logarithme. 4066.84752 fubtract the filft L og. there remaines 2066.84752 the Logarithme of 16 aq the third proportionall.

Againe fubtract the firt Logarithme 2000.00000 out of the fumme of the Logarithmes of 2033.42376 the fecond N . and the third Proportionall 2066. 84752 there remaines the Logarithme
2099.27128 anfwering vnto 125 . 972 she fourth number in continuall proportion.

Acc rding to the fecond manner of operation we may take the difference between the Logarithmes of the two numbers giuen; fo, this difference applied to the Logarithme of the tecond number fhall give the L garithme of the third Proportionall: the fame difference applied to the Logarichme of the third Proportionall, fhall giue the Logaritbme of the fourth Proportionall. Or the double of this difference applyed to the Logarithme of the firf number hall giue the Logarithme of the third Proportionall : the treble of this differcnce auplyed to the Logarithme of the firt number fhall giue the Logaritime of the fourth proportionall : and fo forward.

As in the former example, where the two numbers giuen were 100 and $108:$ fuppofe 100 increafing to 108 , and fo yearly in continuall proportion after the rate of 8 in 100 , and that it were rcquifed to find, what this 100 would grow vnto by the end of 20 yeeres?

The Logarithme of the firft numb, 100 is 2000.00000 the Logarithme of the fecond $108 \quad 2033.42376$
the yearely diff rence increafing $\quad 33 \cdot 42376$ addd to the Loga. of the fecond giues, 2066.8275^{2} the Logarithme of $116{ }^{64}$ for the chird proportionall; And luch is the encreafe at the end of the fecond yeare.

Againe the rame yeerely difference added to the Logarithme of the third Proportionall gines, $\quad 2100.25128$ the Logarithme of 125971 for the fourth Proportionall and the encreafe at the end of the third yeare : and fo the reft.

But becaufe the quefion is onely of the 20 yeare without knowing the reft, we may multiply the former yeerely diffe-
by 20 ; fo the difference of 20 yeate $\quad 668.47520$
added to the Log. of the firtt num:I00.vz. 2000. 00000 giues the Logarithme of $466 . \frac{095}{2668.47520}$ that is 466.1 I. I. S.I I.d.fere. the fumme that 100 would grow, vnto by the end of 20 yeares at the rate propofed.

In like manner if the two firt numbers giuen were 108 and roo:Suppofe 108 decreafing to the rooand fo yeerely in concinuall proportion and that it were required to find what 100 would decreafe vnto by the end of 20 yeares: Or (which is all one) fuppofe 100 to be due 20 yeare hence, and that it were required to find the worth thereofin ready money according to the former rate. The Log. of the firft N.ro8 is 2033.42376 the Logarithme of the fecond $100 \quad 2000.00000$ the differedce for the ycare decreafing 33.4237^{6} taken from the logarithme of 100 leaues 1966.57624. the Logarithme of 92 g $_{2}$ for the third proportionall. and fuch is the prefent worth of 100 l. due at the yeares end.

The fame difference fubtracted once more leaues 1933°. 15248 the Logarithme of $85 \frac{733}{}$ for the fourth propotionall, and the prefenr worth of 100 l . due at the end of two yeares.

The fame diff rence multiplyed by 20 makes 668.47520
and fubiracted from the Log. of 100 leaues I 331.52480 the Logarithme of 2145 ± 8 that is $2 \times 1.9 \mathrm{~s} .5 \mathrm{~d}$. and fuch is the prefent worth of rool. due at the end of 20 yeares: So that this prefent worth being taken forth of the roo 1. principall debe there remaines 78 l. 101 I d . for the prefent worth of the contimed gaine that may be made either of the loane of rool. or of 8 1. annuity after 20 yeares according to the former rate.

If a leafe of rool. by the yeare or fuch other yeerely penfion were to continue for 20 yeares, and thet it were required to find the worth thereof in ready money. This might bee found vpon the fame ground of continuall proportion, and that feuerall wayes.

1 It appeareth before, that 100 l . due at the yeares end is worth but $92 \frac{592}{}$ in ready money: If it be due at the end of 2 yeares, the prefent worth is 851 . 733 : then adding tieefe two together, wee haue 1781.326 for the prefent worth of
roo. pound Annuity for 2. yeeres and fo forward:
2 It appeareth before that the prefent worth of 8 pound annuity for 20 yeeres is 78 pound 5452 ; and then it followes by proportion.

As an Annuity of is to the worth thereof	81. 10000	989
	78.545	1895.11953
		992. 29954
So an Annuity of vato the worth of it	100.0000	3000.00000
	981.8147.	2992.029

3 As the yeerely loane of 100 pound includes an Annuity of 8. pound, So there is a fumme tquivalent to 100 pourd Arnuity.

This fumme equivalent may be diminifhed according to the number of yeeres as before: to the complement of the fumme diminithed to the fumme equivalent hail be the prefent worth of the Annuity.

As the yeerely gaine of	8	0903.08999
to the loane of	100	2000.00000
So an Annuity of	100	2000.00000
to the fum equiualent	1250	3096.9100 I

Then for diminifhing of this fum equivalent wee may multiply the former yeerely diff rence 33.42376 by 20 . fo the difference for $20 y \in e r e s$ 668.47520 taken from the \log arithme of 1250 3096.91001 there remaines the logar.of $268.1853 \quad 2428.4348 \mathrm{r}$ whofe complement to 1250 is $981.8_{14} 4$. that is 98 . l.I 6.5 . $3 . d .06$. and fuch is the prefert worth of 100. pound Annuity for 20 . yeeres, at the rate of 8 . in 1 oo per annum.

The like reafon holdeth for any other rate and time propoled.

$$
P_{\text {R }} O \quad \text { P. } \quad \text {. }
$$

Hauing two extrense numbers gixen, to finde a meane Proportionall betweene them.

Adde the logarithmes of the two extreme numbers the; one halfe of the fumme fhall be the logarithme of the meane Proportionall.
As if the two extreme numbers giuen were 8, and 32

The logarithme of $\quad 8$	is	0903.08999
The logarithme of	32	1505.14998
The fumme of both logarithmes	2408.23997	
The halfe of this fumme is	1204.11998	

$$
\text { PROP. } 10
$$

Hauing two extreme numbers gisen to find two meane; Preportional's betweene ihem.

In the ordinary way of Arithmetiqne we commonly multiply the greater extreme by the fquare of the leffer, fo the Cubique root of the Product thall be the leffer meane : then multiplying the leffer miane into the greater extreme, the fquare root of the Product thall be the greater Meane Proportionall. Or hauing found the leffer meane, wee may finde the other meane by continuall proportion.

Accordingly we may adde the logarithme of the greater extreme to double the logarithme of the leffer, fo the third part of the fumme fiall be the logarithme of the leffer meane. Then adding this logarithme of the leffer meane, to the logarithme of the greater extreme, the one halfe of the fumme Cccc
fhall

As if the two extreme numb ris given were 8. and 27 Adde to the logarithme of 8 viz. 0903.08999
 and the logarithme of $27 \quad \frac{143 \text { I: } 36376}{}$ The fumme of thefe will be $\quad 3237.54374$ the third part of this fumme is 1079.18125 the logirithme of iz. the leffer meane Probortionall: A d: to this logar. of the leffer meane 1079.1812 , the logar. of the greater extreme $\quad 1435.36376$
The fumme of both logar. will be $\quad 2510.54501$
and the halfe of this fuunn e is $\quad 1255.27250$ the togarithme of 18 . the greate of the two meane Proportionailu hefc rcquired.

Or according to the fecond manner of operation in the Rule of Three, (which is the worke that I alwaies follow in the line of numbers) we may take the difference betweene the logarithmes of the two extreme numbers, and diuide this diftuience into three eguall parts, fo the fumme of the logarithmes of the leffer extreme and $\frac{1}{3}$ part hall be the logari hme of the teff r Meane : the fumme of this logarithme of the leffer meane and the fame; part fhall bee the logasichme of the Greater meane Proportionall.

[^0]And by the fame reafon, if it were required to find three Meane Proportionals, we might divide the former difference into 4 . equall parts; and fo forward.

As if it were required to finde the firt of eleven Meane Propertionals betweene roo and ro8. Or (which is all one) fuppale 100 pound increafing in continuali proportion, fo as that by the end of 12 moneths it came ro 108 pound and that it were required to find what chis roo pound did grow. vato by the end of the firft moneth.

The Logarithme of the firt extreme 100 is 2000.00000 the Logarithme of the fecond $\quad 108 \quad 2033.42376$ the yearely difference betweene them 33.42376
The I 2 part or monethly difference 2. 78535 added to the Logarithme of 100 giues 2002.7853 E the Logarithme of 100.6434030 I the firt ot eleven meane Proportionals: and the growth required.

Then having the e- two, 100 and 100. 64340301 r : together with 108 , the laft of the twelue, the other intermediate may be found by continuall proportion as before.

This Explication of my ten former Propofitions may ferve for the frugall vee of the Table of Logarithmes. Thofe which reguire more may haue recourle to shat Treatife which is meacioned before inthe front of the Table,

Ccce 2

CHAF.

C H A P. 1 I.

COncerning the vfe of the Lines of Sines and Tangents I hhewed in generall, pag.21. how the might ferue for the refolution of all Sphericall triangles. Mare particularly in the vfe of my SeCtor (pag. 74) I reduced that which is commonly required in a fpharicall triangle vnto 28 cafes. And for thefe they may be all relolued by myTables of Artificiall Sines and Tangents without the heip. of Secants or verfed Sines.
This mamer of the worke will be alwaies fuch as in the ordinary rule of Three. For, here we haue three numbers giuen whereby to find a fourth Proportionall. And therefore
either we may adde the Logarithmes of the fecond and third, and fubtract the Logarithme of the firf:

Or we may take the difference between the Logatithmes of the firft and lecond, and apply that difference to the Logarithme of the third.

The firft of thefe waies is beft for the refolution of right angled Triangles where the Radius, viz. 1000.0000 is one of the three numbers giuen: But the fecond way, by d.fferences is more conuenient for the reft.

The like manner of worke may be obferved when we are to confider the Sines or Tangents of Degrees, Minutes, and Seconds. For the Seconds, not exprefled in the Canon, will be found by the part proportionall: as I will how in the examples following.

1 If it were required to finde the Sine of $5 \mathrm{I} \cdot \mathrm{gr} \cdot 3^{\prime \prime} .15^{\prime \prime}$. I hould finde.

The Sine of ${ }^{1} 1 \mathrm{deg} .32 \mathrm{mi}$, is 989.745^{2}
$\begin{array}{ll}\text { the Sine of } 51 \text { deg. } 33 \mathrm{mo} \\ \text { the Tabular diff. rence betweene them } & \frac{9893.8455}{1003}\end{array}$ Then the difference berweene 32 m . and 33 m . being $60 \mathrm{Se}-$ conds, the Proportion willhold,
$\begin{array}{lll}\text { As } 60 \text { Seconds } & \text { vito } & 1003 \\ \text { So } 15 . & \text { vnto } & 251\end{array}$ the part Proportionall to be added vato the Sine 51 deg. 32 m .

So thall we have 9893.7703 . for the fine of 51 deg . 32.m. 15 feconds.

2 If it were required to finde the Degrees, Minutes and Seconds belonging to this Tangent 10099.9782 I fhould finde by the Canon that this is fomewhat more then the Tangent of 51 deg. 32 mi . leffe then the Tangent ot 51 deg. 33 mi . 10100.1728
$\begin{array}{ll}\text { The Tabular difference betweene thefe is } & 2594 \\ \text { and the proper difference is }\end{array}$ betweene the leffer of thefe Tangents, and the Tangent giuen therefore.
As 2594 vnto 60 Seconds,
So 648 vnto 15 And fo, I finde this
the Tangent of 51 drg. 3^{2} mi. 15 feconds.
3. If it were reguired to finde the Sine belonging to this Tangent Io099:9782, I fhould finde the arke to be fomewhat more then 51 gr .32 m . and the fine correfpondent fomewhat more then 9893.745^{2}. then taking out the differences as before, I firde that

As the Tabular difference of Tange. $2594 \quad 3413.9700$ is to the properd:fference

648

$$
\begin{array}{r}
2811.5750 \\
602.3950 \\
\hline
\end{array}
$$

So the Tabular difference of Sines $1003 \quad 3001.3009$ $\begin{array}{llll}\text { to the part Proportionall } \quad 251 & 2398.9059\end{array}$ This part proport. added vnto the former Sine. 9893.7452. Cccc 3
gives
giues 98937703 for the figne required.
Thefe premiffes confidered t come to the 28 Cafes before mentioned wheren 1 fer downe a Canon and an Fxample for each cate, and thefe for the moft part the fame which I vied betore.

Thofe which haue no further yfe, but ofdegrees and minutes may take that fine or Tangent, which they find to be next in the Canon, and teglect the feconds.

IN ARECTANGLETRIANGLE

I To finde a fide by knowing the Bale and the Angle oppofite to the iniuired fide.

As in the Rectangle triangle $A C B$ wherein A ftands for the xquino fiall point ; $A B$, an arke of the Ecliptique reprefenting the Longitude of the Sunne in the beginning of $\succ ; \mathcal{B} C$ an arke of the Declination from the Sun to the xquator; and A Can arke
 of the Equator reprefenting the right afcenfion of the funne in B: Knowing the Bale A B to be $30 \mathrm{gr}_{\mathrm{o}}$ and the Ange B A C $23 \mathrm{gr} .3^{1 \mathrm{mb}} 30^{\prime \prime}$. if it were reouired to find the fide B C

As the Radius the fine of D M S
90.0.0. 10000. 0000 30.0 .09698 .9700 is to the fine of the Bafe
So the fine of the oppofite angle, 23. $3^{1,30}$. 9601.1352 to the fine of the fide required $11.30 .43,12300.1052$
And fo writing the fine $960 \mathbf{x} 135^{2}$ in a paper by it felfe and boldung it to the fine of the Bafe in the Canon i.gr. $2,3,4$, 5, and to forward, it woald be no long worke to write the furmme
fumme in a columne by ir felfe, and fo find the Declination for each degree and Minute of the Ecliptique.
2. To finde a fade by knowing the Bafe and the other fide.

As in the Rectangle A CB haning AB 30 gr . and BC $11 \mathrm{gr} .30 \mathrm{~m} .43^{\prime \prime} \mathrm{S}$, to finde the fide A C.

As the cofine of the fide given Ir.30.43. 9991. 1740 is to the Radius
So the cofine of the Bafe 90. 0. 0. 10000, 0000 30. 0. o. 9937.5306 to the cofine of the fide required. $27 \cdot 53 \cdot 43 \cdot 9946 \cdot 3566$

3. To finde a fide by knowing the two

 obbique Angles.As in the Rectangle ACB, hauing CAB for the firfe Angle $23 \mathrm{gr} .3^{1} \mathrm{~mm} 30 \mathrm{~S}$. and ABC for the fecond $69 \mathrm{~g}_{\mathrm{g}} .20$ m. 35 S : to find the fide A C.

As the inne of the next angle 23.31.30 \quad g601. I 352 is to the Radius 20.0.0. 20000.0000

So the coffit of the oppofite angle 69.20.35.9547.4918 to the cofine of the fide required. $27.53 \cdot 43 \cdot \overline{9946.3566}$

4 To finde the BAS S E by knowing both the fides.

As in the Refangle A CB hauing AC 2753 mo. $43^{\prime \prime}$, and $B C, 11 \mathrm{gr}, 30 \mathrm{~m} .43 \mathrm{So}$, to find the Bafe $A \mathrm{~B}_{\text {。 }}$

> 5 To finde the $\mathcal{B} A S E$ by knowing one fide and the Angle oppofite to that fide.

As if in the former triangle A C B we draw B D an Arke of the Horizon for the Latitude of 5 Igr .30 m . reputing the amplitude of the Sunnes rifing from the Eaft, we Thall haue two Triangles more, one rectungle $B C D$, the other obliquadrangled ABD. And fo, in the Rectangle D C B , hauing BC II gr. 30 m .43 s . and BDC 38 gr .30 m . if it were reguired, to find the Bafe D B.

As the fine of the Angle
to the fine of the fide So is the Radius
to the fine of the Bare

38300	9794. 1495
II 3043	9300. 1052
200	10000. 0000
is 4156	9505. 95

6 To finde an Angle by knowing the other

 oblique angle, and the fide oppofite to the angle required.As in the Rectangle A C B, hauing B A C. 23 gr .31 jm . 30 s. and AC 27 gr .53 m .43 s. to find the angle $\mathrm{A} B \mathrm{C}$.

As the Radius

| 9000 | 10000.0000 |
| :--- | :--- | :--- |
| 233130 | 9601.1352 |
| 275343 | 9946.3566 |
| uired 692035 | 19547.4918 |

7 'To finde an angle by knowing the other. oblique angle, and the file opposite to the angle given.

As in the Rectangle A CB having BA C 23 gr .31 ns $30 \int$ and $B C$ It 40 m .43 f , to find the angle $A B C$.

As the corine of the fidel 113043 9991. 1740
to the confine of the angle given $233^{11} 30 \quad 9962.3^{153}$ So is the Radius 90 ○ 0 10000.0000 to the fine of the angle required $692035 \quad 297 \mathrm{I}$. 14 I 3

8 To find an angle by knowing the Bale, and the file opposite to the
angle required.

As in the Rectangle B CD having B D $18 . \mathrm{gr} .4 \mathrm{~m} .56 \mathrm{f}$ and BC in gr. 30 m .43 f. to find the angle BD C.

As the fine of the Bate is to the Radius
So the fine of the oppofite file to the fine of the angle

18	41	56	9505.0000
90	0	0	10000.0000
11	30	43	9300.1052
38	30	0	$9794 \cdot$

Thee eight Propositions have beene wrought by fines alone ; the eight following require joint help of Tangents.

$$
D \mathrm{ddd} \quad 9 T_{0}
$$

9 To find a fide, by knowing the other fide, and the angle oppofite to tbe fide required.

As in the Rectangle A C B, hauing A C 27 gr .53 m .43 S and BAC 23 gr .3 Im .30 . . to find the fide BC .

As the Radius
$90 \quad 0 \quad 10000.0000$
to the fine of the fide giuen $\quad 275343.9670 .1112$ So the Tangent of the oppofite angle $233^{1} 30 \quad 9638.8199$
to the Tangent of the fide required. $113043 \quad 19308.93 \mathrm{Iz}$
10 To find a fide by knowing the other fide and the angle next the fide required.

As in the rectangle BCD hauing BC II gr. 30 m .43 fo and BDC 38 gr .30 m . to finde D.C.

As the Tangent of the angle $383000 \quad 2900.6052$
tothe Tangent of the fide giuen II $3047 \quad 9308.9317$ So the Radius
to the fine of the fide required
$\begin{array}{lll}200 & 0 & 10000.0000 \\ 145011 & 9408.3259\end{array}$
11 To finde a fide by knowing the Bafeand the Angle next the fide required.

As in the rectangle $A C B$, hauing $A B 30$ gro.0 m. and $B A_{i} C$ 23.57 .31 \%. 30 f . to finde the fide A C.
and Table of Logarithmes:
Asthe Radius
to the cofine of the angle So the Tangent of the Bale

12 To find the Bafe by knowing both the

 oblique Aigles.As in the rectangle A C B; hauing BAC $23 \mathrm{gr} .3 \mathrm{Ims} .30 \mathrm{~S}_{0}$ and A B C 69 gr .20 m .35 \% to find the Bafe A B.

As the Tangent of the one angle to the cotangent of the other So the Radius to the cofine of the bafe

13 To find the Bafe, by knowing one of the fides and the Angle next that Jide.

As in the rectangle A C B , hauing AC $27 \mathrm{gr} .53 \mathrm{~m}_{0} 43 \mathrm{fo}$

As the cofine of the angle is to the Radius So the Tangent of the fide to the tangent of the bafe

233130	9962,3153
9000	10000,0000
275343	9723,7547
3000	9761,4394

14. To finde an Angle by knowing both the fides.

As in the rectangle A C B , hauing AC 27 gr .53 m .43 So and $B C$ II $g r . j \circ m .43$, to finde the angle $A B C$. Dddd. 2

As the fine of the next fide is to the Radius

11	30	43	9300, I052
90	0	0	$\frac{900,0000}{10000}$
2753	43	$\frac{9723,7547}{}$	
69.20	35	10423,6495	

15. To find an angle by knowing the Bafe; and the fide next the angle required.
'As in the rectangle B CD, hauing B D 18 gr .41 m .56 l , and : BC II gr. 30 m .43 f. to finde the angle B DC.

As the tangent of the Bare
to the tangent of the fide So, is the Radius
to the cofine of the angle

184^{15}	952935063
113043	9308,93.11
9000	10000, 0000
53046	9779, 424

16 To finde an angle by knowing the Bafe

 and the other oblique angle.As in the rectangle A CB, hauing the Bafe A B 30 gr . and B AC 23 gr .3 x m .30 f . to find the angle BAC .

As the cofine of the Bare

$$
3000 \quad 9937,0060
$$ is to the Radius $\quad 9000.10000,0000$ So the cotangent of the angle giann $23,3130 \quad 1036,1801$ to the tangent of the angle required 69203510423,6425

Thefe i 6 cafes are all that can fall ont in a Rectangle triangle thofe which follow doe trold.

In any Sphæricall Triangle whatfoeuer.

17. To finde a fade oppofite to an angle given by knowing one fade and two angles, the one, oppofite to the file given, the other, to the ide required.

As in the triangle AB D, having AB $30 \mathrm{gr} . \mathrm{BDC} 38 \mathrm{gr} .30$ m. and BAD 23 gr .3 Im .30 fo to find the fade $B D$, which here reprefenteth the amplitude.

As the fine of the next angle to the fine of his oppofite fide

So the fine of the opposite angle to the fine of the ide required.

$$
\begin{array}{r}
3830099794,1495 \\
3000 \frac{9698,9700}{95,1795}
\end{array}
$$

$$
2331309601,1352
$$

$$
7841569505,9557
$$

Or changing the fie of the two middle termes

Asthe fine of the next Angle to the fine of the oppofite Angle

$$
\begin{array}{r}
383009794,1495 \\
233130 \frac{9601,1352}{193,0143} \\
300009698,9700 \\
1841569505,9557
\end{array}
$$

to the fine of the fide required

And fo writing this difference 193, 0143 in a paper by it felfe and holding it to the fine of the fide in the Canon. $1, g^{g}$. $2,3,4,5$ and fo forward, it would bee no long work to fubtract and write the remainder in a columne by it felfe, and fo find the amplitude for each degree \& minute of the Ecliptigue.

DAd 3

Or, in fteed of fubtracting this difference, we might firft take the fame out of the Radius, and then adde the complement as I fhewed bofore, in the generall explication of the Rule of Three.
18. To finde an Angle oppofite to a fide giuen by knowing one angle and two fides, the one oppofite to the angle ginen, the other to the angle required.

As in the triangle ZPS repreo fenting the Zenith, Pole, and Sun: where $Z \mathrm{P}$ is the complement of the Latitude, PS, the complement of the declination, Z S the complement of the Sunnes altitude, P Z S, the Azimuth; Z PS , the houre of the day
 from the Meridian and PSZ the angle of the Suns Pofition in regard of the Pole and Zenith;
 to finde the angle $Z \mathrm{PS}$.
As the fine of the next fide $\quad 7000 \quad 9972,9858$ is to the fine of his oppofite angle 1303 II $\frac{9883,9153}{89,0705}$
So the fine of the oppofite fide to the fine of the angle required

19 To find an Angle by knowing the three fidides.

As in the triangle Z PS, hauing $Z P 38$ gr. $30 \mathrm{~m} . \operatorname{PS} 70$ $g^{g r}$ and $Z S_{40} g r_{0}$ to finde the angle $Z \mathcal{T} S$, fubtending the Base ZS,

As the Reatangle contained vnder the fines of the fides is torthe fquare of the Radius :
So the Rectangle contained under the fines of the halfe: fumme of the three fides, and the difference betweene this halfe-fumme and the Bafe,
to the S quare of the cofine of halfe the angle requircd.

Here for the Square of the Radim we take 20000.0000 to this we adde 9983.3805 the fine of 74 gr .15 m . and 9750. 3579 . the file of 34 gr .15 m . which make 39733. 7384.

Then for the Rectangle of the fides we adde 9794.1495 the fine of $38 \mathrm{gr} .30, \mathrm{~mm}$. and 9972.9858 , the fine of $70 \mathrm{gr}_{\text {. }}$ which make 19767.1353. This we take our of 39733.7384 and there remaines for the Logarithme of the fquare 19966. 603 x , the halfe thereof 9983.3015 we finde to be the cofine of $15.47^{\prime \prime}$. $3^{\prime \prime} \cdot$ And fo, the whole Angle reguired is 3. $34^{\circ} \cdot 26^{\prime \prime}$.

Or for fuch numbers as are to be fubtracted; we may take them out of the Radius, and write downe their Complements, and then adde them rogether with the reft, the manner of the worke ineither way will be fuct as followeth.

In the like manner we may finde the angle $T Z S$ to be 130 gr .3 min. II records, and the angle $Z \mathrm{~S}^{2} \mathrm{P} 30 \mathrm{gr}$. 28 mim. II Seconds.

20. To find S SD E by knowing the three Angles.

If for either of the Anglesnext the fide required, we take the complement to 180 gr. there angles will be turned into. fides, and the fides into angles. Then may the work bee the fame, as in the former Propofition.

As in the triangle $Z P S$, knowing the angle $Z P S$ to be $31.34^{\prime} \cdot 26^{\prime \prime} \cdot P Z S 130 \cdot 3^{\prime} \cdot 11^{\prime \prime}$ and $Z S^{P}$ 30. $28^{\prime} \cdot 11^{\prime \prime}$. if it were required to finde the fire $Z S$ oppofite to the angle $Z P S, I$ would take $1303^{\prime} \mathrm{II}^{\prime \prime}$ out of 180 gr . the remainder will be 495649
Then, as if I had a triangle of 3 knowne fides, one of 3 I $34^{\prime \prime} 2^{\prime \prime} 6^{\prime \prime}$, another of $3028^{\prime} 11^{\prime \prime}$ and the third of $4956^{\prime} 49^{\prime \prime}$, I would feeke the angle oppofite to the first of the fe fides, by the lat Proportion.

So the angle which is thus found would be the fide which is here required.

Thus here the Angle oppo. is $3134^{\circ} 26^{\prime \prime}$ the leffer of the next Angles 302811 . 9705.0790 the complement of the other $495649 \ldots 9883.9153$ the fumme of thefe three in 5926 the halfe fumme 555043 2918,5490 the differ, from the opp.ang'e $24-25$ iy 9616.4170 the fumme of double the Radires and 20000.0000 the fines of halfe fumme and d fference is
Take hence the fines of the next angles 39534.9660 19588.9943 there remaines for the fquare 199459717 The hale whereof is che cofine 9972,9858. of $20 \mathrm{gr} .0^{\circ}$ and to the fide required, $40 \mathrm{gr}, 0 \mathrm{~m}$.

The other fides may be found in the fame fort; but when we know either three fides and one angle, or three angles and one fide, the reft may be found more readily by the $\mathbf{7} 7$ or I8 Propofition.

21 To finde a $S I \mathcal{D} E$ by bauing the other two fides and the Angle comprebended.

This and the Proportion following are beft refolved by reducing the oblique:angle triangles given into two Rectangles.

As in the Triangle Z P S , hauig Z P $38 \mathrm{gr} \cdot 30^{\prime}$. P 5 70 0^{\prime} and Z PS 31.34^{\prime} $26^{\prime \prime}$ oo finde the fide $Z \mathrm{~S}$.

In that we have Z P and ZPS, we may fuppore a Poypendicular ZR to be let downe from the angle at Z vpon the greater fide PS ؛ So if ZPS the angle giuen beleffe then $90 g r$. it will fall within the triangle; if more then 90 gr . it will fall without the tizangle, vpon the fide produced, and diuide the triangle giuen into two Rect-angles ZRS and ZRP. Wherein

1 We may finde the quantity of this Perpendicular by the firf Propofition of Sphxricall Triangles.

2 Wee may finde the fide PR either by the fecond or tenth, or rather by the eleventh Propofition: which fide PR will giue the fide RS.

3 Hauing $Z \mathrm{R}$ and RS , wee may
 find the bafe $Z S$ by the fourth Propolition, as I hew in the: vfe of the Sectors page 86 .

But here for variety, I will hew how the fame may bee done of two opperations, both in this and the reft of the cafes following, without knowing the quantity of the Perpendicular:

$$
\begin{array}{lllll}
\text { I As the Redius or fine of } Z R P & 90.0^{\prime} & 0^{\prime \prime} & 10000.0000 \\
\text { to the cofine of the ang. } Z P R & 31.34 & 26 & 9930.4223 \\
\text { So the Tangent of the fide } Z \mathrm{P} & 38.30 & 0 & 9900.6052 \\
\text { to the tangent of the arke PR } & 34.7 & 30 & 19831.0275
\end{array}
$$

[^1]and Table of Logarithmes:
to the confine of Z P
So the confine of RS
to the confine of $Z S$
$38.300 \quad \frac{9893.5443}{24.3899}$
$35.5230 \quad \frac{9908.6438}{}$
40. 0 O 9884.2539
22. To finder a S ID E by knowing the other two fides and one angle next the ide required.

As in the triangle $Z P Q$ having $Z P, 38.30^{\circ}$ and $Z S 4^{\circ}$ gr. 0° and Z P S, $3 \times, 34^{\prime} 26^{\prime \prime}$ to find the fine P S.
I Find the arks $\mathrm{P} R$ by the Ir Proposition as before.
2 As the confine of PZ to the corine of $\mathrm{P} R$

So the eofine of $Z S$ to the corine of $S R$

$38.30^{\prime \prime} 0^{\prime \prime}$	9893.5443
34.730	$\frac{99 \mathrm{r} 7.934^{2}}{24.3899}$

23 To find a SID E by knowing one fade and the iwo Angles next the Side required.
As in the triangle $Z P S$ having $Z \mathcal{P} \quad 3830 \mathrm{~mm}$ Z PS, 3 I 34 m .26 fe and $Z P S \quad 30.28 \mathrm{~m}$. II /e. to find the file $\mathrm{P} S$.
I: Find the ark $P R$ as before.
2. As the tangent of $Z S P$

30.28 II	9769.6236
31.3426	9788.5746
3418.0510	
34.730	9748.9617
35.5230	9767.9127
Erect 2	24 To

24 Tofinde a Side by knowing tivo angles; and the Side inclofed by them.

As in the triangle $Z \mathrm{PS}$ hauing $\mathrm{Z}: \mathrm{P} 38.30 \mathrm{~m}, \mathrm{ZPS} 31$ $34 \mathrm{~m} .26 / \mathrm{e}$. and $\mathrm{P} Z S 1303 \mathrm{~m}$. 11 fec . to find the fide ZS

1 As the cofine of $\mathrm{PZ} \quad 38 \quad 30^{\prime} 0^{\prime \prime} \quad 9893.5443$ is to the Radius $\quad: 90 \quad 0 \quad 0 \quad \frac{10000.0000}{100}$
So the cotangent of ZPS $31 \quad 3426 \begin{aligned} & \text { 10211,4253 }\end{aligned}$ tothe tangent of $\mathrm{P} Z \mathrm{R} \quad 6418$ 50 $\quad 103^{17} 7.88$ ro

2 As the cofine of \quad S Z R $654422 \quad 9613,7228$ to the cofine of

PZR $64: 850$
$\begin{array}{llllll}\begin{array}{c}\text { So the tangent of } \\ \text { to the tangent of }\end{array} & \text { P Z } & 38.30 & 0 & 9900,6052 \\ 40 & 0 & 0 & 9923,8135\end{array}$

25 To finde an angle by knovving the other twvo. Angles and the fode inclofed by them.

As in the triangle ZPS hauing $\mathrm{ZP} 3830 \mathrm{~m} . \mathrm{ZPS}$ $3^{1} 34 \mathrm{~m} .26 / \mathrm{e}$. and $P \mathrm{ZS} 1303$. wo. $1 \mathrm{I} \cdot \mathrm{fe}_{\mathrm{e}}$ to finde the angle Z SP.
I Finde the angle P Z R by the 16 Propofition at before.
2 Asthe fine of P ZR 64. $1850 \quad 9954.8122$ to the fine of SZR 65.44^{21} 9959.8453
5.033 I
$\begin{array}{llll}\text { So the cofine of } Z \text { P S } & 31.3426 & 9930.422 \\ \text { to the oofine of ZS. } & 30.2811 & 9935.4554\end{array}$

26 To find an angle by knowing the other two Angles and one fine next the angle required.

As in the triangle $Z P S$, having $Z P 38.30 \mathrm{~m} . Z \mathrm{PS} \mathrm{S}_{2}$ 31 gr .34 m .26 fe and ZS P 30.28 m . II fe to tinge the angle $\mathrm{P} Z \mathrm{~S}$.
I Fine the angle $P Z$ R as before.
2 As the cofine of to the confine of

UPS	31.3426	9930.4223	
ZS	30.2811	9935.4554	
			5.0332
PR	64.1850	9954.8122	
SR	65.4421	9959.8453	

27 To finds an Angle by knowing two files and the angle contained by them:

As in the triangle $Z P S$, having $Z P 38.30$ ms. $P S 70$ gr: and ZP S 31.34 m .26 fe. to find the angle ZSP .
$1 \quad$ Finde the arks \mathcal{P}, R as before.
2 As the fine of
SR
35. $52^{\prime} \quad 30^{\prime \prime \prime}-9767.9127$
to the fine of
PR
34. $73^{30} \frac{9748.9617}{18.9510}$
So the tangent of $Z P S$ to the tangent of ZS P.
31. $3 4 2 6 \longdiv { 9 7 8 8 . 5 7 4 6 }$
30. 28 13 9.7696236.

Feces 3
2870

2 To finde an angle by knovving the tuvo next fides, and one of the other angles.

As in the triangle $Z P S$ hauing Z P 88.30 mp ZS 40 gr . and ZPS 31.34 mn. 26 fe . to finde the angle PZS . j
I. Finde the angle $\mathrm{P} \mathbf{Z} \mathrm{R}$, as before.

Thefe 28 Cales are thofe which I fet downe in the vfe of the Sector, and all that are commonly reguired in a Ppharicall triangle. I will here adde two more, to fhew how that which is found before, by the 22.23.26 and 28. Propofitions may fometimes be found more cafily. viz.
29. To finde a Side by knovving the other tveo Sides and the ir oppofite anglese.

As in the triangle ZPS, hauing PS 70 gr and Z Z 130
 to finde the thitd fide Zof.

As the fine of halfe the difference of the angles giuen, to the fine of halfe the fumme of thofe angles: -) So the tangent of halfe the difference of the fides giuen, to the tangent of halfe the fide required.

30 To finde ani Angle, by krowixg the other two angles; and their oppogite fides.

As in the triangle $Z P S$, hauing the former parts $P S, P Z S_{2}$ $Z S$ and $Z P S$, to finde the thitd angle $Z S P$.

As the fine of halfe the difference of the fides giuen, to the fine of halfe the fumme of thofe fides;
So the tangent of halfe the difference of the angles given, to the cotangent of halfe the angle required.

CHAP. 1 L .

COncerning the ioyne ofe of the Lines of Numbers, Sines and tangents, I hewed how they might ferue for the refolution of right lined Triangles, whereof I fet downe fue propogitions, paoe ${ }^{2}$ to And the faifa may be applyed to the Table and Canon of Logarith mes.
FThe fides of thefe triangles are meafured by abfolute num. bers, and fo reprefented by Logarithmes. The angles are theafured by degrees and minutes, and fo to be found by fines and tangents in the Cahon.

PROP. I.

Fauine tbree Angles, and one fide to finde the other troo SIDES.

If it be a rectangle triangle, wherein one fide about the right angle being knowne, it were required onely to finde the other, this might bee readily done by Sines and Tangents. As in the rectangle A I B, knowing the angle B A I to be 43.20. and the fide AI to be 244, if it were required to fiude the other fide A I.
$\begin{array}{llll}\text { As the Radius (the tangent of) } & 45 \mathrm{gr} .0 \mathrm{mb} & 10000.0000 \\ \text { is to the tangent of the angle } & 43 & 20 & 9974.7195\end{array}$

	A I	244. 000	2387.3898
to the fide required	BI	230.	

But where both the other fides are required, it is beft done by Logarithmes and Sines. As in the fame rectangle A I B, hauing the 3 angles and the fide A I, to finde both BI and $A \cdot B$.

As the fine of the oppofite angle A B I 46. $40{ }^{\circ} 9861,757 \overline{5}$ is to the fide giuen

AI 244. 0002387.3898
7474.3677

So the fine of the fecond angle B A I 43. 20' 9836.4770 to his oppofite fide BI 230. 2 2362.1093
As the fine of the third angle AIB 90. ○ 10000.0000 to his oppofite fide AB $335.953,12525.6323$.

The like holdeth alpo in obliqu-angled triangles: As in the Triangle Á BD (which I proofed page 13. as an example for the finding of diftances) where knowing the diftance between A and D, to be 100 paces; the angle BAC to be 43. 20 m , the angle BD A 122, or the outward angle B DC, 58 gr. and confequently the angle AB D oppofite to $A D$ the file given to be 14.40 m . it was required to find the diftances AB and DB.
 $\begin{array}{lll}\text { is to the file given } & \text { AD 100. } 0 \times 0 & 2000.0000\end{array}$

7403 ,4554
So the fine of the fecond angle AD B 58.0 . 9928.4204 to his oppofitefide AB 334. $\frac{937}{2524.9650}$ And the fine of the third angle DA B 43. 20' 9836.4770 to his oppofite ide

DB 271.032 Eff
2433.0216 PROP.

PROR. II.

Hauing two fides and one angle oppofite to either of. thofe fides to find the otber two angles and the third fide.
'As in the triangle ABD, hauing the two fides AB 335: paces and $A D 100$ paces, and knowing the argle $A D B$. which oppofite to the fide A E , to be 122 gr or the outward angle BDC to be 58 gr . if it were reguired to find the other two angles ar A and B, and the third fide BD. I may firft find an angle $A B D$ oppofite to the other knowne fide $A D_{0}$.

As the oppofite fide AB $\quad 335 \frac{000}{2525,0448}$
to the fine of the angle giuen $\mathrm{ADB} \quad$ 58: $0^{\circ} \quad 9928,4204$
7403, 3756
So is the next fide AD $100 \div 2000,0000$ to the fine of his opp. angle A B D 14.59\% 9403,3756

Then knowing the fe two angles at D and B, I take the inward angle $A B D$ 1 $459^{\prime} 50^{\prime \prime}$. .our of the outward angle $B D C$ 580^{\prime} and fo find the thrid angle B AD , to bee 43^{20} 10 \int_{0} So hauing three angles, and 2 fides I may well find the. hird: fide BD by the former Proportion.

> As the fine of the firf angle is D B 58 gr .0 mm . 9928, 420 a is to his oppofite fide $A E \quad 335 \stackrel{000}{-}$

KPR OP.

PROP. III.

Hauing two fides and the angle betweene them io finde the other two angles and the third /ide.

If the angle conteined betweene the two fides giuen bee a right angle, the orher two angles will be found readily by tano gents and Logarithmes. As in the rectangle AIB hauing the fide A I 244 and the fide I B to find the angles ar A and B.

As the greater fide	A.I	244	2387,3898
is to the leffer fide	I B	230	2361,3278
So the Redius the tangent of	$45 \mathrm{gr} .0^{\prime}$	10000,0000	
to the tangent of the leffer angle	43	$18 \frac{1}{2}$	9974,3380

But if it bean oblique angle that is conteined betweene the two fides giuen, the triangle may be reduced into two rectangle triangles, and then refolued as before.

As, in the triangle $A D B$, hauing the fides $A B 335 A D$, 100 and the angle B AD 4320°, to finde the angles at B and D, and the third fide B D. Firft, I would fuppofe a perpendicular DH to bee let downe from D , the end of the leffer fide, vpon the greater fide $\mathrm{A} B:$ fo fhall I baue two rectangle triangles D H A and DHB. And in the rectangle AHD, the angle at A being 4320^{\prime} the other angle $A D H$ will be 46. 40 ' by complement and with thefe angles and the fide $A \mathcal{D}, 1$ may find both $A H$ and $D H$ by the firt proportion. Then taking $A H$ out of $A B$, there remaines $H B$ for the fide of the Rectangle D_{B}, and therefore with this fide $H \mathcal{B}$ and the other fide $\mathcal{D} H$, I may finde the angle at B, by the former part of this proportion. And with this angle and the perpendicular $D H$, I may finde the third fide $D B$, by the firft propofition.

Or hauing two fides and the angle betweene them, wee Ffff
may fiude the other two angles without letting downe any perpendicular, in this manner.

As the fumme of the two fides given is to the difference of thefe fides
So the tangent of halfe the fum of the two oppofitelan:gles to the tangent of halfe the difference betweene thofe angles.

So here hauing the fide and the other fide the fumme of thefe fides is and the difference of thefe fides.
The angle conteined $\mathcal{B} A D$ is $A B \quad 3.35$
the fumme of the two oppofite angles
the halfe fumme of thefe angles
100
$435 \quad 2638,4892$
$235 \quad 2371,9678$
$4320^{\circ} 267,4214$
13640°
and by proportion and halfe difference $5340 \frac{1}{5} 10133,4878$
This halfe fum \& halte differéce mak $1220 \frac{1}{5}$ the greater angle and the difference betweene them $1419 \frac{4}{5}$ the leffer angle.

PROP. IV.

Hauingithree fides, to finde the three angles.

Let one of the three fides giuen be the Bafe, (but rather the greater fide) that the perpendicular may fall within the sriangle. Then gather the fumme and the difference of the two fides, and the proportion will hold.

As the Bafe of the Triangle to the fumme of the fides.
So the difference of the fides to the alternate Bafe. This alternate
Bafe being taken forth of the true bafe, if wee let downe a perpendicular from the oppofite angle, it thall tall vpon the middle of the remainder, As in the triangle ADB*

The leffer fide is
AD
100
The other fide
The Bafe of the triamgle $\quad \mathscr{A} B$
The fumme of the fides
The difference betweene thefe fides
and fo the alternate Bafe is
This taken out of 335 leaues the haife whereof is

271
335

371

2525,0448
$\frac{2569,3739}{44,3291}$
171 2232,9961
189 $\frac{376}{64}$ 227.7.3252
145.

72 8r2. And fuch is the fegment $A H$, the diftance betweene the angle at \mathcal{A} and the perpendicular $D H$. So that hauing drawne this perpendicular, wee haue two rectangle triangles $\mathcal{D} H \mathscr{A}$ and $D H \mathcal{B}$ in which hiauing two fides and the right angle, wee may find the other angles by the fecond propofition.

Thefe foure propofitions may fuffice for the refolution of the fides and angles in all right lined Triangles.

PRPOP. V.

Hauing the Bafe and Perpendicular in a right-lined Triangle, to finde the fuperficiall content.

The perpendicular may bee found, by one or other of the former propofition S , and that being known we may find the furerficiall content. As in the Triangle A D B, hauing the Bafe $A B 335$, and the perpendicular $D H 68,545$.
As the number of
to the perpendicular
So the Bafe
to the content.

68.545	$\begin{aligned} & 0301,0700 \\ & 1835,9757 \end{aligned}$
335	2525,0448
$11481{ }^{133}$	4059,9905
Ffff 3	Or

Or, if we would find the content without knowing the per pendicular, we may put two or more operations into one, as in the proportion following.

PROP. VI.

Flaing two fides of a right lined Triangle, and the angle betweene them, to find the content.

Adde the fine of the Angle, and the Logarithmes of both the fides, from the fumme of thefe fubtract - 10301,0300 fo'the Remainder fhall be the Logarithme of the content.

As, in the triangle A D B, hauing the fides AB 335, AD .玉00, and the angle B AD 43 gr .20 m .

The fine of the angle, $\quad 43 \mathrm{gr} .20 \mathrm{~mm}$ is 9836,4770 che Logarithme of the fide A B 335 2525,0448 che Logarithme of the fide A D IOO 2000, 0000 The funme of thefe make from which fubtract the folemne Logarithme 10301,0300 the Remainder will be 4060,4918
the Logarithme of 15494 the content required.

PROP. VII.

Hauing three Anoles, and one fide of a right-lined Triangle, to finde the content.

Adde the double of the Logarithme of the fide given, and the fines of the two next angles; fram the fumme of thefe fubtract the fumme of 10301,0300 , and the fine of the oppolite angle, fo the Remainder fhall bee the Logarithme of the content.

As in the Triangle ADB fuppofing the angles BAC to be 34 D. " 20 ms . B D A 122. D. 0 m, AB D 14 gr .40 mq and the fide A D to be 100 parts.
The Logarithme of the fide AC 100 is 2000,0000 the fame againe The fine of the angle BAC The fine of the angle BD A The fumme of thefe foure make

$$
{ }^{2000,0000}
$$

Againe if we adde the folemne Logarithme $\quad \frac{2704,974}{10301,0300}$ to the finc of the oppofite angle $14 \mathrm{gr} \cdot 40^{\circ}$ ' 9403,4554 The fumme of both will make Which fubtracted from 23764.8974 leaue $\quad 4060,4120$ the Logarithme of 11492 the content required.

PROP. VIII.

Hauing the third fides of a right-lined triangle, to finde the content.

Firft fet downe the three fides; the fumme of them, and the halfe fumme. Then from this halfe-fumme fubtract each fide feucrally, and note the differences. Thise donc, adde the Logarithmes of the halfe-fumme, and thefe differences, the halfe. thereof fhall be the Logarithme of the content.

Thus in the triangle
$A D B$, the three fides are $\begin{cases}A B E & 335 \\ D \mathcal{E} . & 27 \mathrm{x} \\ A D . & 100 \\ \vdots \\ \text { the fumme of thefe fides is } & \\ \hline\end{cases}$
the halfe fumme $\quad 353 \quad 2547,7747$
the difference from A B $\quad 18 \quad 1255,2725$ the difference from $D B$
the difference from A D 253
The fumme of their Logarithmes
1913,8138
$\frac{2403 ; 1205}{8119,9815}$
and the halfe thereot is
the Logarithme of 1 198 8 29 the content required. PROP.

PROP. IX.

Hauing the three fides of a right-lined triangle:

 to finde the Perpendisular.As, in the former triangle AD B, to finde the perpendicular D H. Firt, find the content of the Triangle by the former proportion, then may the perpendicular bee found by the conuerfe of the V.Prepofition,

As the Bafe of the triangle to the fuperficiall content.

So alwayes the number of to the perpendicular

$\begin{gathered} 335 \\ 11485.29 \end{gathered}$	2525,0448
	1534,9459
	030
68 [45	1835,9759

PROP. X.

Hauing the Semidiameter of a Circle to finde the

Chord for any Arke propofed.

As if in protracting the former triangle A DB it were regaired to find length of a Chord of 43 gr .20 m . agreeing to the Semidiameter A E, which wee fuppofe to be 3 inches. This might be done by the firft proportion for, if the chord were drawne from E to F we hould haue a triangle E A F of three angles and two fides knowne. But, more generally comparing the fine of 30 gr . with the fine of halfe, the arke propofed, the proportion will hold.

So that hauing drawne the line A E, and defcribed an occult arke of a Circle vpon the center A, and femidiameter A Eat the diftance of three inches, if we take out two inches, and 215 parts of 1000 , and infcribe them into that arke from E to F, the line A F Shall make the angle FAE to be 4320 m . as was required.

Thus hauing applyed that to the Canon and table of Logarithmes which I had fet downe before for the generall vfe of the lines of numbers, fines, and tangent, it may appeare fufficiently, that, if we obferue the rules of proportion fet forth by others, and worke by thefe Tables, we may vfe addition infteed of their multiplication, and fubtraction infteed of their diuifion, and fo apply thefe generall rules to infinite particulars.

C H A P. I V.

Containing fome ofe of right-lined triangles, in the practije of Fortification.

IN the late manner of Fortification the ordinary care is.
I That the angle of the Buiwarke may be either a right angle, or neere vnto it.

- 2 That this angle may be defended from the flanque and cortin on either fide.

3 That the lines of defenfe may not exceed the reach of a musket, which is faid to bee xij. fcore yards and thofe make 720 foot.

4 That the depth of the flanques and bredth of the rampart be fufficient to refift a battery;and that may beabout 100 foot at the ground.

Gg g g
Vpon

Vpon thefe confiderations depend the reft of lines and angles: whereof I will fet downe fome Propofitions, begins: ning with that which may refolue the works of others.

PROP. I.

Hauing the fide of a Regular Fort, with , the length of the Gorge, the Flanque and the Face of the Buliwarke, to find the ref of the lines and angles.

A regular Fort is that, which is made with equall fides and angles, each Bulwarke tike vnto other.'

Suppofe that, by obfervation or otherwife we haue found, that in a fquare fort, the fide was 700 foot, the Gorge 140 , the Fianque 100, and the Face 335 : In a Pentagonall, hexagonall, heptagonall, as in this table.

The fide $A B$		Quadr	Pentag Hexag		HeptagOClag.	
		700	800	900	950	$1{ }^{1000}$
Thegorge	$A \mathcal{D}$	140	180	190	200	230
		100	120	14°	150	140
		335	352	370	360	420

And that it were required to find the reft of the lines, and the quantity of the angles belonging to each Fort, beginning: with the quadrate.

Firft we may protract this Fort, by making a fquare whofe fide AB fhall bee 700 foot by the fcale: then take but 840 for the gorge, and fet them of from A vnto D, and from A vnto H . At D and H raife 2, flangues perpendicular to the fides of the fort and there pricke cowne 100 from D vnto E, and and from H vnto G . That done, take 335 out of the lame fcale, and fetting one foot of the compaffes in the point $E_{\text {, }}$ make an occult arke of a circle. Agatne , fetting one foote of the compaffes in the point G, make another occult arke, croffing the former in the point F; So the lines, $E F ; F G$ thall reprefent the face of the Bulwarke.

In like manner, for the Bulwarke ar B, wee may fer of the gorge from B vinto $N, \& c$. So haue wes diuerfe triangles ${ }_{3}$ which may be refolued by the firft 3. Propofitions of righlined triangles: And the manner of it fhall be to fet downe, as that the Precept may be eafily diftinguifhed from the example, and applicd to any other, not onely by this canon and table of Logarithmes, but by the old Canon of,fines and tañ

Gggg ${ }^{2}$
gents, Sector and the croffe-ftaffe.

I In the Rectangle A DE, hauing the fides AD, AE, we may find the angles at A and E, and the third fide $A E$, by the former part of the third Proportion of Right-lined triangles.

gorge	${ }^{\prime}{ }^{\text {D }}$	2146.1280
to the Flanque	$\mathcal{D} \varepsilon$	2000.0000
So the Radius		$90.00^{\prime \prime} 0^{\prime \prime} 10000$
to the the tangent of	DAE	$35.32 \cdot \frac{3}{4} \quad 985.3 .87$

Take the angle $D A E$ out of $9 \circ g r$.the complenent will giue the angle $D E A$: and then, hauing two fides and three angles, we may well find the third fide $A E$ by the firt Propofition of right-lined triangles

As the fine of	$D A E$	$35.32 \frac{1}{4}$	$\frac{9764.3542}{2000.0000}$
to the fide	$D E$	100.	
So the fine of	$A D E$	$90.0^{\prime} .0^{\prime \prime}$	10000.0003
to the fide	$A E$	$172 \cong$	$2.235 .645^{8}$

2 Becaufe the fort is fuppofed to bee fquare, the angle $H A D$, mult be 98 gr. and the halfe angle $C \mathscr{A} D 45 \mathrm{gr}$ if wee adde this angle $C A D$ vnto the angle $\mathcal{D} A E$ and take the fumme out of 180 gr . the remainder $99.2 \frac{3}{74}$ hall be the angle $E \subset A F$. Then in the triang'e $E A F$, hauing the angle at A, and the two fides FE, AE, wee may finde the other angles at E and F, by the IfI, Propofition of right-lined triangles.

As the face
to the fine of
So the line
to the fine of

EF	335	2.525:0448
EAF	$99.27 \frac{3}{4}$	9994.0502
		7469.0054
AE	17249	2235.6459
AFE	30. $26 \frac{8}{5}$	2704. 6513

and Table of Logarit hnes.

Adde this angle A FE to the angle E A F, and take the fumme out of 180 gr . the Remaindcr 50. $6.4^{\prime \prime}$ Ihall be the angle AE F. And then we haue two fides and thre angles a to finde the head-line A F.

As the fine of to the face	$\begin{gathered} \text { EAF } \\ \text { EF } \end{gathered}$	$\begin{aligned} & \text { 99. } 27 \frac{3}{4} \\ & 335: \end{aligned}$	$\begin{aligned} & 9964.0502 \\ & 2525.0448 \\ & \hline \end{aligned}$
			7469.0054
So the fine of	AEF	50.6. $\frac{1}{13}$	9884.8958
to the headline	AF	260:5	2415.8904

3 If we produce the face FE vntill it meet the cortin in O; we fall haue the triangle A FO: wherein, knowing the fide AF, and the three angles (for, knowing two angles, the third is alwayes knowne by complement vinto 180 gr .) wee may finde the other two fides F.O, A O.

As the fine of to the head-line	$\begin{gathered} A O F \\ A F \end{gathered}$	$\begin{aligned} & 14.33^{\circ} .48^{\prime \prime} \\ & 26055 \end{aligned}$	$\begin{aligned} & 9400.4548 \\ & 2415.8904 \end{aligned}$
			6984.5644
So the fine of	FAO	45.0'.0'	9849.4850
to the line	FO	7.32 吅	2864.9206
and the fine of	AFO	30.26.12"	9704.6513
to the line	AO	524 ${ }^{912}$	2720.0869

Take the gorge NB I 40 , out of the fide A B 700 . there remaines 560 for the line AN. Take this line A. Oout of AN, and there remaines $35^{\circ 88}$ for O N that part of the cortin from whence the face of the Bulwarke may be defended.

4 In the triangle A FN hauing two fides AF, AN; and the angle betweene them FA N, we may finde the other two angles at F and N, by the later part of the third Propofition of right-lined triangles.

$$
\text { Gggg } 3
$$

As the fumme of the fides $A \mathrm{~F}, \mathcal{A}, 820 \leq 5$ is to the difference of thofe fides . . 2994s oppofite angles at F and N . to the tangent of halfe the diference 8. $36 \frac{1}{5}, ~ 2199.8348$ \therefore between thofe angles.
This halfe difference added to the halfe fum, gives the grea-

ter angle.		31.6 ${ }^{\text {\% }}$
60, and fubtracted, the leffer	A	13. $53 \frac{4}{5}$
As the fine of $A \mathrm{NF}$	$13.53 .48^{\prime}$	9380.5159
to the headine $A F$	2605	2415.8904
		6964.6253
So the Sine of FAN	45.0.0	9849.4850
to the line of defence $\mathrm{F} \mathbf{N}$	$767 \stackrel{\text { in }}{ }$	2884.8597

5 In the triangle $A B C$ we haue the fide $A B$, and the 3. angles, to finde the fide $C A$ or $C B_{\zeta}$ from the center to the angles of the Fort.

As the fine of	ACB	90.0 .0	10000.0000
to the fide	AB	700.	2845.0980
So the fine of	ABC	45.0 .0	9849.4850
to the line	AC	494.95	2694.5830

This line $A \mathrm{C}$ addd to the headline $A \mathrm{~F}$, giues the whole CF, from the center of the Fort to the vttermoft point of the Bulwark to be $755 \frac{525}{5}$

6 In the triargle C FL (the fide F L being parallel to $A B$ the fide of the Fort) we haue the three angles and the fide CF ; by which we may finde F L the diftance between the points of the two next Bulwarks.

As the fine of	CLF	45.	0	0	9849.4850
to the line	CF	755	525	2878.2498	
So the fine of	FCI	90.	0	0	10000.0000
to the fine	FL	1068.	464	3028.7648	

Thus by refoluing of fix triangles we haue found The angleat the gorge to D A E $35^{\circ} \times 32^{\circ} 15^{\prime \prime}$; the angle of the Bulwark G. FEO 60. 52.24 the angle FED 104: 33. 48
the angle
$A N F=13.53 \quad 48$
Hoote
The length of the line the Headline
the Line on the Cortin
the Line of defence

the line fro the center to the Bulw. C E. $755: 525$
the diftance betweene the Bulw. FL, 1068. 464 the principall Lines and Angles belonging to the Bulwark at A.:

The reft of the lines are either parallell ynto thefe, or elfe they may be found in the fame manner.
And all thefe may be vnderftood to be the fame in-the ren of the Buiwarkes belonging to this Fort.

Againe, what is faid of a fguare Fort, the fame may be applyed to all regular Forts.

And fo, refoluing the worke of other men, it may appeare how neere they hatue come to the formergrounds.

But that wee may not altogether infift vpon examples, I will fer downe fome profitable fuppofitionsia and from them proceed to firde the reft of the lines and angles belonging to, auy Regular: Fort.

1 The angle at the center $A C B$, betweene the lines $C A, C B$, drawne from the Center to each Bulwarke, is found by dividing 360 gr . by the number of the fides. So in a quare Fort, this angle will be 90 gr . In a Pentagonall Fort, where there are fue fides, it will be $72 \mathrm{gr} . \& \mathrm{c}$.

2 Take this angle at the center, out of 180 gr . there re: maines the angle of the Fort HAD.

3 The angle $A \mathrm{DE}$ between the Flanque and the Cortin, may be alway 90 gr .

The vttermoft angle of the Bulwarke E FG, muft be leffe then the angle of the Fort, yet not leffe then 60 gr . nor doth it need to be much more then 90 gr . If we allow it to be $\frac{2}{3}$. of the angle of the Fort, it may be defended from the Flanque and Cortin on cither fide.
$5^{\text { }}$ The angle at the Gorge DAE; which formes the Flanque D E, may beallowed betweene 35 and 40 gr . For in fmall regular Forts, it may be $40 \mathrm{gr}_{\bullet}{ }^{\prime}$ but where the angle of the Fort is great, it may be lefle.

Thefe 5: angles being firft fettled, the moft of the other angles will deperid vpon them, as in the Table following. A

Or howfoener there may bee other angles found to bce more convenient, yet thefe are fufticiento explane the vfe of triangles.

II. Hawing

PROP.II.

Hauing the ordinary angles, with the Flanque and line of Defenfe, to finde the refo of the lines and angles, in a regular Fort.

SVppofe the angles to be fuch, as in the former table, the depth of the flanque DE roo. foot, and the line of defenfe F N 720. foote; and that it were required, to find the reft of the lines and angles belonging to a Pantagonall fort.

1. In the triangle $A D E$, hauing the three angles and the flanque DE, we may find the length of the gorge AD, and the line AE. The angle ADE is alway 90 gr . but, the fort being Pentagonall, mad with fiue Bulwarkes at che fiue angles; the table giues the angle D AE to bee 39 gr . and the angle AED si gr. wherefore.

As the fine of to the flanque	$\underset{D E}{D E}$	$39 \cdot 0^{\prime} \cdot 0^{\prime \prime \prime}$	$\begin{array}{r} 9798.8718 \\ 2000.0000 \\ \hline \end{array}$
			7798.8718
So the fine of tothegorge	$\begin{aligned} & A E D \\ & A D \end{aligned}$	$\begin{aligned} & 51.0^{\prime} \\ & 1234 \end{aligned}$	$\begin{array}{r} 9890.5026 \\ 2091.6308 \\ \hline \end{array}$
And the whole fine to the line	$\begin{aligned} & A D \\ & A D \end{aligned}$	$\begin{aligned} & 90.0 .0 \\ & 158 \stackrel{90}{2} \end{aligned}$	$\begin{aligned} & 10000.0200 \\ & 2201.1282 \end{aligned}$

2 In the triangle AFE, hauing the three angles and the fide $A E$, we may find the face of the Bulwarke $F E$, and the head-line A F.

$$
\mathrm{Hhhh}
$$

As

As the fine of to the line	$\begin{aligned} & \text { AFE } \\ & \text { AE } \end{aligned}$	$\begin{aligned} & 36.0 .0 \\ & 158 \div \end{aligned}$	$\begin{array}{r} 9769.2186 \\ 2291.1282 \\ \hline \end{array}$
			7568.0904
So the fine of to the face	$\begin{aligned} & \text { FAE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & 87 \cdot 0.0 \\ & 269.9 \end{aligned}$	$\begin{aligned} & 9999.4044 \\ & 2431.3740 \\ & \hline \end{aligned}$
And the fine of	AEF	57. 0. 0	9923.5914
to the head-line	AF	226	2355.5010

3 In the criangle A F O, hauing the three angies and the fide A F, we may find the other two fides FO and AO. As the fine of AOF
18. 0.0 .
9489.9823
to the headline
AF 226 72.
2355.5010
$7134 \cdot 4813$
$\begin{array}{cllll}\text { So the fine of } & \text { EAO } & \text { 26. 0. } 0 . & 9907.4576 \\ \text { to the line } & \text { FO } & 5935 & 2773.4763 \\ \text { And the fine of } & \text { AFO } & 36.0 .0 & 9769.2186 \\ \text { co the line } & \text { AO } & 4312 & 2634.7373\end{array}$
4 In the triangle AF N, hauing the headline A F the line of defenfe $F N$, and the angle $F A \cdot N$, wee may find the other two angles at N and F, and the third fide A.
As rhe line of defenfe. to the fine of

So the headline FN 720 .
2857.3325
to the fine of

FAN	$126.0 .0^{\prime \prime}$,	$\underline{9907.9576}$
		$\underline{7050.6251}$
AF	22672	$\underline{2355.5010}$
ANF	14.45 .33.	9406.1261

This angle A \sim F added to the angle FAN, and the fumme of both taken out of 180 gr . will giue the third angle A F N. As the fine of FAN 126 gr. 0.0 .19907 .2576 to the line of defenfe EN $\quad 720^{\circ}$. .. $\quad 2857.3325$ 7050.6251

So the fine of totheline

> AFN $39.14^{\prime 2} 7^{\prime \prime}$
> AN 5629^{90}
9801. 1178
2750.4927

Hauing

Hauing this line $A N$ if we adde the gorge $N B$, or $A D$, the fumme of both fhall be the fide of the fort $A B$.

If wee take the gorge $A D$, out of this line $A N$, the remainder thall be the cortin D N.

Againe if we take the line A O, out of this line AN, the remainder hall be ON , that pari of the cortin from whence the face of the Bulwarke may be defended. And fo here

The length of this line the gorge	A 2 being $A D$	562.98
the fide of th	A B fhall	123.49 686.47
the cortin	D 2	439.49
Againe taking the line	AO	41.26
from $\mathrm{A} N$, there remaine	O2	${ }^{3} 31.7$

5 In the triangle A I C, hauing the three angles and the fide A I, the one halfe of AB the fide of the fort, wee may find both OI, the femidiameter of the circle inferibed, and C A , the femidiameter of the circle circumfcribed about the fort.

This line CA added to the head-line A F, giues the diftance C F betweene the center of the fort, and the vttermoft point of the Bulwarke.

6 If this fort fhall be incompaffed with 2 dith, whofe vttermoft fides fhall bee parallell to the face of the Bulwarke fuppofing this ditch to be of a known bredth(and that maybe about 100 foot) we hate the triangle $\mathrm{F}_{2} \mathrm{X}_{\text {; }}$, wherein, knowing the three angles, \& the fide F_{2}, we may find the line $F X$. Hhhh 2

As the fine a	FX2	36:0.0.	9769. 2186
to the bredth-line	F2	100.	2000. 0000
So the whole fine	F 2 X	90.0, 0.	10000.0000
to the line	FX	170	23

This line $F X$ added to the line CF, giues the diftance $C X$. betweene the center of the fort, and the vteermoft corner of the ditch. And fo here,

The length of the liead-line	A F is	226.72
the femidiameter	C A	583.95
Both thefe make the line	CF	810.67
Adde vnto this the line	F X	170.13
So $C A, A F, F$ X make	CX	980.80

7 In the triangle CYX, hauing the thre angles and the Gide CX, we may finde the two other fides $C Y$ and $X Y$.

As the fine of to the line:	$C X$	980^{80}	$\begin{array}{r} 9978.2063 \\ 2991.5815 \\ \hline \end{array}$
			6986.6248
So the fine of	CXY	36:0.0.	9769.2186
to the line	CY	606169	2782.5938
And the fine	XCY	36.0. o.	9769.2886
to the line	XY	606169	2782.5938

Take the line CI., from this line C Y, there remaines I Y, the bridth of the ditch from the middle of the cortin.

8 : Then, for the lines F L, X Z, and fuch other parallels to the fide of the fort $A \cdot B$,

As the femidiamcter. to the fide of the fort	$\begin{aligned} & C A \\ & A B \end{aligned}$	$\begin{aligned} & 583.95 \\ & 686.47 \end{aligned}$	$\begin{array}{r} 2766.3729 \\ 2836.6215 \\ \hline \end{array}$
			7074.2486
So the length of	CF	810.67	2908.8444
to the diftance	FL	953.00	2979.0930
And the length of	C X	980.80	2991. 5815
sothe ditance	XZ	1152.97	306\%.8201

9. The Perpendiculars $\mathrm{C}_{3}, \mathrm{C}_{4}$, and fuch others, let downe from the center vpon the former parallels may bee found in the fame fort,

A; the femidiameter to the Perpendiculas	CI	$\begin{aligned} & 583 \cdot 95 \\ & 47^{2} \cdot 42 \end{aligned}$	$\begin{array}{r} 2766.3729 \\ 2674.3305 \\ \hline \end{array}$
			92.0424
So the length of	C F	810.67	2908.8444
tothe Perpedicular	C 3	655.84	2816.8020
And the length of	CX	980.80	2991.5815
to the Perpendictular	C_{4}	793.48	2899.5391

Io If wee take IR the bredth of the Rampart, out of the Perpendicular CI, fuppofing the bredih of the Rampart to be 100 . foote, there remaines 372.42 for the Perpendicular $C R$.

If wee take out IT, the bredth of the Rampart and ftreet adioining (the freet being fuppofed 30 . foot broad) therere-: maines 34 2: 42 . for the Perpendicular CT.

As the Perpendicular	CI	472.42	2674.3305
to the fide of the fort	AB	686.47	2836.6215

PROP. III.

Hating the ordinary angles with the line of defenfe and face of the Bulwarke, to find the reft of the lines and angles.

C Vppofe a long cortin to be fortified with Bulwarks, the S angle of each Bulwark to bee 20 gr . the angle at the gorge forming the flanque 35 gr . the reft, as in the former ta ale, the line of defence, 720 tote, and the face of the Bulware 300 foots.

1. In the triangle AE F, hawing the three angles and the face FE, wee may fiode the headline AF, and the line $\leadsto E$.

As the fine of to the face	$\begin{aligned} & \mathrm{F} A E \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & 55.0 .0 \\ & 300 . \end{aligned}$	$\begin{array}{r} 9913.3645 \\ 2477.1212 \\ \hline 7436.2433 \\ \hline \end{array}$
So the fine of	$A E F$	80.0.0.	9993.3514
to the head-line	$A \mathrm{~F}$	360.668	2557.1085
And the fine of	$A \mathrm{~F} \varepsilon$	45.0.0.	9849.4850
to the line	$A E$	258.965	$2413.24{ }^{1} 7$

2. In the triangle $A D \in$ hauing the three angles and the line $A E$, we may find both the flanque $\mathcal{D} E$, and the gorge $A \mathrm{D}$

As the fine of to the line	$\begin{aligned} & \text { ADE } \\ & A E \end{aligned}$	$\begin{array}{r} 90.0 . \\ 258 . \\ \hline 6 \end{array}$	$\begin{array}{r} 10000.0000 \\ 2413.2417 . \\ 7586.7583 \\ \hline \end{array}$
So the fine of to the flanque	$\begin{aligned} & \text { DAE } \\ & \text { DE } \end{aligned}$	$\begin{aligned} & 35.0,0 \\ & 148.53 \end{aligned}$	$\begin{aligned} & 9758.5913 \\ & 2178.8330 \end{aligned}$
And the fine of to the gorge	$\begin{aligned} & \text { AED } \\ & \text { AD } \end{aligned}$	$\begin{aligned} & 55.0 .0 \\ & 212.132 \end{aligned}$	$\begin{aligned} & 9913 \cdot 3645 \\ & 2326.6062 \end{aligned}$

3 In the triangle FA O, hauing the three angles, and the two equall fides A. F, A.O, we may finde the length of of F O; the face produced vnto the cortin.

As the fine of	AOF	$45.0 .0^{\prime \prime}$	9849.4850
to the headline A F	360.66	2557.1085	
So the whole fine of FA O	90.0 .0	10000.0000	
to the face produced FO	510.	2707.623 l	

4 In the triangle F A N, hauing the headline A F, the line of defenfe F N, and the right angle FAN , wee may finde the other two angles at F and N , and the third fideA. N.

As the line of defence FN	720	2857
the whole fine of F AN		10000.0000
So the headitine AF	360.66	2557.108I
to the fine of, ANF	30. 3	9699.7756
As the fine of FAN	90.0.0	10000.0000
to thelire FN	720.	2857.3325
So the fine of AFN	59.56 ${ }^{\frac{1}{3}}$	9937.2735
to theline	623.1697	2794.

Hauing the line A N, if we adde the Gorge N B, or AD, the fumme of both fhall be the line $A B$ or $F L$, the diftance betweene both Bulwarks.
If we take the Gorge A D out of this line A N , the remainder fhall be the Cortin DN.

Againe, if we take the line A O out of this line A N, the remainder fhall be ON \mathbf{N} that part of the cortin from whence the face of the Bulwark may be defended.

Thus the length of AN the Gorge $\mathrm{N} B$, or $A D$	bei	$\begin{aligned} & \sigma_{23.16} 6_{9} \\ & 212.12 \times 2 \end{aligned}$
the diftance FL or $A B$ the Cortin		$\begin{aligned} & 8,85.301 \\ & 41.037 \end{aligned}$
Againe taking the line A O from A N, there remaine $O N$		360.668

$P R^{1} O P$

PROP. IIII.

Hauing the Angles of an irregular Fort, with the fide betweene them, and the face of the Bulwark, to find the reft of the Lines and Angles.

Suppofe the angles of an old walled Towne were to bee fortified with new Bulwarks. The angles of the Bulwarke to be either ${ }_{3}^{2}$. of the angle at the wall, or (if $\frac{1}{3}$ of the angle be more then 90 gr .) it may fuffice, that they be 90 gr . The Flanques perpendicular to the Cortin, to be formed by an angle betweene 35 and 40 gr . as fhall be found more conuenient. And the face of each Bulwarke to be 300 foot. Let the angle at A be 126 grothen may EFG, the angle of the Bulwark be 84 g . and the angle D A E may be allowed to be 38 gr . Let the angle at B be 140 gro then becaufe ${ }^{3}$. of this angle are aboue 93 gr . the angle of this Bulwarke may well be 90 gr and the angle atthe Gorge NB. M. 36 gr . And let $A B$, the diftance berweene thefe angles be 750 foot.

In regular Forts the Bulwarkes may be made one like the other, fo the head-lines being produced will all meet in the fame center. In irregular (fuch as this) there will bee fome difference, yet the worke though fomewhat longer will bee ftill the fame.

At the Bulwarke A in the triangle AFE, becaule the angle of the Fort HAD is 126 gr . the halfe angle QAD 63 gr . and the angle at the Gorge D A E fuppofed to be 38 gr . the angle EAF will bee 79 gr . Againe the angle A E E (the halfe of GFE the angle of the Bulwarke) being 42 gr , the angle. A E F will be 59 gr , by comple-: ment.

As the fine of to the face.	$\begin{array}{c\|c} \mathrm{FAE} \\ \mathrm{FE} \end{array}$	$\begin{aligned} & 79.00 .0 \\ & 300 . \end{aligned}$	$\begin{aligned} & 9991,9465 \\ & 2477.1212 \\ & \hline \end{aligned}$
			7514.8253
So the fine of	AEF	59.0. 0	9933.0696
to the head-li	ne AF	261, 963.	2418.2403
And the fine of	AFE	4200	9825.5109
to the line		204.496.	2310.6856

In the rectangle ADE the angle, at the Gorge D AE being 38 gr . the other angle DEA mult bee $5^{2} \mathrm{gr}$. by complement.

As the whole fine of ADE $\quad 90,0.0 .10000,0000$ to the line AE
204.496

2319.6856
7689.3144
9789.3419
2100.0275
989.5321

So the fine of to the flanque

DAE
$\begin{array}{ll}38.0 .0 & 9789.3419 \\ 125.900 & 2100.0275 \\ 2.0 .0 & 9896.5325\end{array}$
And the fine of,
AED
2207.2177

In like manner at the Bulwarke \mathcal{B} in the triangle BLM, becaute the angle of the fort is 140 gr . the halte thereof S.B N 7.0 gr . and the angle at the Gorge N B M fuppofed to be 36 gr . the angle M BL will be 74 gr . And then the angle B L M (the halfe of the angle of the Bulwarke) being 45 gr . the third angie B M L, muft be 6 gr . by comple:ment.

	$\begin{gathered} M B L . \\ M L \end{gathered}$	$\begin{array}{r} 14 \\ 30 \end{array}$	$\begin{aligned} & 9982.8416 \\ & 2477.1212 \\ & \hline \end{aligned}$
			7505.7204
So the finc of to the head	$\begin{gathered} B M L \\ \text { ne } B L \end{gathered}$	$\begin{aligned} & 6 \times .0 .00 \\ & 272.960 \end{aligned}$	$\begin{aligned} & 9941.8192 \\ & 2436.0988 \end{aligned}$
And the fine of to the liag	$\begin{array}{r} \text { BLM } \\ \text { BM } \end{array}$	$\begin{aligned} & 45 \cdot \mathrm{Fo} .0 \\ & 220.681 \end{aligned}$	

And in the rectangle triangle $B N M$, allowing $N B M$, the angle at the Gorge to be 36 gru the other angle BMN mutt be 54 gr . by complement.

As the whole fine B NM to the line \quad B M	$\begin{aligned} & 20.0 .0 . \\ & 220.681 \end{aligned}$	$\begin{array}{r} 10000.0000 \\ 2343.764^{6} \\ \hline \end{array}$
		7656.2354
$\begin{aligned} & \text { So the fine of NBM } \\ & \text { to the flanque NM } \end{aligned}$	$\begin{aligned} & 36.0 .0 \\ & 129.713 \end{aligned}$	$\begin{aligned} & 9709,2186 \\ & 2112,9832 \end{aligned}$
And the fine of $B \mathbf{M N}$ to the Gorge BN	$\begin{aligned} & 54.0 .0 \\ & 178.534 \end{aligned}$	$\begin{aligned} & 9907,9576 \\ & 225 x, 7222 \end{aligned}$

3 In the triangle $\triangle F O$, taking the angle $A F O{ }_{4} \mathrm{gr}$. out of the angle QAO 63 gr . there remaines 2 I gr. for the angle A OF.

As the fine of A OF to the headline AF	$\begin{aligned} & \text { 21. } 00 \cdot 0 \\ & 261 \cdot 963 \end{aligned}$	$\begin{aligned} & 9554,3291 \\ & 2418,2403 \\ & \hline \end{aligned}$
		7136,0888
So the fine of AFO	42. 0.0	9825,5109
- to the line AO	489. 127	2689,4222
And the fine of FAO	$6_{3} 0.0$	9949,8808
to the face producedFO	651.316	2813,7920

And fo in the like triangle $B L P$, taking the angle $B L P$, 45 gr . out of the angle SBP 70 gr . there remaines 25 gr . for the third angle BPL.

Thus the length of the ride. the length of the Gorge the length of the line ${ }^{6}$ Take from this the line there remaines for the line Againe taking the Gorge out of the ride $A B$ there romaines $\mathcal{B} D$
Take from this the line
there remains for the line
Take $A D$ out of $A N$ the cortin $D N$
$B P$
$\mathcal{A} B$ being i750.
$B 2$
AT 178,534
$57,1,466$
10
02
AD
$D P$ 489, 127 82, 339
161, 145
588,855
456,704
132,151
is 410,321
4 In the triangle e $A F 2$, having two fides $A F, A N$, and $F A Z$ the angle between them, we may finde the 0 sher two angles at N and F, and the line of defence $F N$.

As the fame of the fides $A F, A, N, \quad 833.429 .2920 .868_{4}$ In is to the difference ofthofe fides $\times 309.503 \quad 2490.6536$ So the tangent of halle the fame of the two 430.2048 $\begin{array}{ll}\begin{array}{ll}\text { opposite angles at } F \text { and } N \\ \text { so the tangent of }\end{array} & \begin{array}{ll}31.30 .0 & 9787.3193 \\ & 12.49 \frac{1}{4} \\ 9357.1145\end{array}\end{array}$ the halle difference between thole angles.
This halle difference added to the halle fame gives the greater angle $\operatorname{AFN}, 44.19 \frac{1}{4}$. and lubtracted che lifer ANF 18: $40 \frac{3}{4}$. As the fine of to the headline

So the fine of to the line of defence And the fine of to the line

$$
18.40^{\prime} \frac{3}{4}, 9505.5225 .
$$

$A F \quad 261.963 \quad 3418.240 .3$
FAN EN
$A F N$
AN

$$
7087.2822
$$

$$
\text { 63. o. } \circ 9949.8808
$$

$$
728.783 \quad 2862.5986
$$

$$
\text { 44. } 19 \frac{1}{7} 9844 \cdot 2725
$$

$$
571.46552756 .9903
$$

And in the like triangle $B D L$, having two fides BL, $B \mathrm{D}$, and the angle betweene them LB D, we may fiume the other two angles at D and L, and the line of defence LD.

This halfe difference added to the halfe fumme giues the greater angle BLD and fubtracted the leffer

BD L $20.36 . \frac{2}{3}$.

As the fine of
BLD.
B L

LBD
So the fine of to the line ofdefence LD And the fine of to the line

BLD
B D
$20.36 \frac{1}{4}$
272.960

7110.3544
907.955

70.0.0. 9972.9858 $728.838 \quad 2862.6314$ $49.23 \frac{2}{3}+9880.3627$ $588.855 \quad 2770.008 .3$

P R O P. V:

Hauing the Lines and Angles of a regular Fort;

 to.find the content in feet and acres.The content of a Fort may be taken feuerall wayes; either from within the Rampert, or from within the outfide of the ditch, or elfe we may take in the Out-workes: And thofe m my be of feuerall forts, fuch as are here reprefented, or the like.

If we confider the content within the Rampart, we haue the triargie QCS, wherein knowing the Perpendicular $C R$ and the Bafe QS, we may fiude the content of the criangle. And this content multiplyed by the number of the like trianglis belönging to the Forr, thall bee the whole content required.
W. Thus, in the Pensagonall Fort before defcribed, where the

Perpendicular CR was found to be in feet 37^{2}. 4^{2}. and the Bafe $2554 \mathrm{~K}, 360$

As the folemne number is to thobale

So the Perpendicular CR
$3 7 2 . 4 2 \longdiv { 2 5 7 1 . 0 . 3 5 8 }$
to the content of the triangle 100773.25 Adde (for sitriangles) the logarithme of $5 . \quad 0698.9700$ The content in feet comes to
0301.0300
2733.3268
2432.2968
5003.3.326
5702.3026

Then to reduce this costent into acres, we may cither divide the number of feet by 43560 , (the number of feet contained in an acre) or working by Logarithmes, we may fuberact this folemne Logarithme 4639.0878%.

Thus, from the Logarithme of $503866.25 \cdot 5702.3026$
fubtract the folemne Logari. of 43560 . 4639.0878
there remaines the Logarith. of 11.56. 1063.2148 the content in acres contained within the Rampert.

If it be required to finde the content of this Pentagosall Fort within the outward fide of the Ditch, we haue ro fuch triangles as $X C Y$, wherein knowing the two fides $C X$, $C \Upsilon$, and the angle betweene them $X C Y$, we may let down a Perpendiculer from the angleat Y, vpon the Bafe $C X$; and then with the Perpendicular and the Bafe, we may finde the content of the triangle as before.

Thus the fide C^{X} being 980.80 , the fide $C \Upsilon 606.17$; and the angle betweene them $X C Y, 36.0^{\prime} \cdot 0^{\prime \prime}$.

1 As the whole fine of $90.0 .0 \quad 10000,0000$ to the leffer fide $\mathrm{Cr} 607.17 \quad 2782,5938$
So the fine of $X^{\prime} C Y$ 36.0.0 9769,2186 to the Perpendicular

2 As the folemne number

$\begin{array}{cc} \text { eer } \\ C & 280,80 \end{array}$	$\begin{array}{r} 0301,0300 \\ 2991,5819 \end{array}$
	2690,5515
	2551,8124
angle 174728,60	5242,3639
Logari, of 10	1000,0000
1747286	$624^{2}, 3^{6} 39$
me of 43560	4639,0878
40, 11	1603,2765

By the fame reafon refoluing all into triangles, wee may take in the Counterfcarp, and the reft of the Out-workes, And fo finde the content, not onely of a Regular Fort, but of any other piece of ground:

FINIS.

 4.
2. -48

 4
4 ary Rextern

$$
0+\operatorname{ton}+5
$$

 $2.5 \% 4$

－队i 1

The ufe of the Canoro

TFis CANON hath like vfe as Tables of right Sines and Tangents fet forth by others, but the practife fomewhat more eafie. For keeping their rules, and working by thefe Tables, you may vfe addition inftead of their multiplications. and fubtraction in ftead of their divifion, and for refolve all Sphzricall triangles without the helpe Secants or verfed fines.

If any defire the like of right-lined Triangles, he may ad joyne the Logarithmes of my old Collegue \& worthy friend M. Henrie Briggs. For both proceed from the fame ground, and fo require the fame maner of workes; as 1 often fhew in. my publigue Lectures at Grefbam College: where I refto.

> Friend so all that areftudious
> of Mashematicall practife,
> E. Go.

FINIS.

CANON

TRIANGVLOR VM.

Or Tables of
Artificiall $S_{\text {ines }}$ and Tangents, to to 2 Radius of ro000, 0000 parts, and each minute of the Quadrant.

By Edm. Gunter Profeffor of Aftonomie in Greftams Colledge:

Printed by William Iones, for Iames Bowler, and are to be fold at the CMarigold in Pauls Church-yard. 1636.

> D. D. D.

Edm. Guntir.

The defcription fibe Canon.

THis Camon hath fix columnes. The fir It is of degrees and minutes, froin the beginning of the Quadrant unta 45 gr . the fixt ot degrees and ininiuts, from 45 gr vato the end of the quadrant; the other f ure contailie the Sises and Tangents belonging to each of the fedegrees and minutes, after the manner of other Cinons. The difference is in the numbers. For thefe Sines are not fuch as halfe the chords.of the double arke, nor thele Tangents perpendiculars at the end of the Diameter:but other numbers fubftituted in their places, for attaining the fame end,"by a moré eafie way, fuch as the Logarithmes of the Lord of Merchi. for, and thereupon I call them Artificiall Sines and Tangents. So the fecond and fourth columnes containe the Sines and T angents of the degres and minutes in the firt columne: the third and fift containe the Sines and T angents of the fixt columie.

As if it wererequired to fiude the artificiall Sine belonging to our latitude, which here at London is $5^{1} g^{r}+32 \mathrm{~m}$, you may find Sine 51 in thelo wer part of the page, and $M .32$ in the fixt c_{0} lumpe, the common angle will giue 9893,7452 for the Sine required. And in the fame line you haue 9793,8317 for the Sine of the complement of this latitude, which in one word máy be called the cofine. In like maner the Tangent of $51 . g r .32$ ma willbe found to be 10099, 9134 , and theico-tangent $9900,0865$.

The Secints (ifthere were vferof them) may eatily befupplied, by taking the co-fine out of the double of the Radius.

As the double of the Radius being \therefore (20000,0000
Take hence the co-fine of $5 \mathbf{1} \mathrm{gr} .32 \mathrm{~m}$. $9793 ; 8317$
The Secant of 51 gr .32 mm . will be \quad 20206, 1683
The:verfed Sines may alfo bee fupplied by adding 5301,0300 vito the double of the ine of halfe the arke, and fubtracting the Radius. As the halfe of $51 \mathrm{gr} .3^{2} \mathrm{~m}$. bing 25 gr .46 m .

Adde to the Sine of 25 gr .46 m . 9638,1968 The fame againe, and the former, 9638,1968 number, fo the Radius being frabtracted, 301,0300 the verjed jine of $51 \mathrm{gr} .3^{2} \mathrm{~m}$, will be $\quad 9577,4236$

$\frac{20}{0}$	$\frac{\sin .2 .}{854^{2}, 8191}$	9999,7353	$\left\|\frac{\operatorname{Tan}_{.2}}{8543,0838}\right\|$	62	
	8546,4217				
	8549,9947	9999,7264	8550,2683	1	
3	8553,5385	9999,7219	8553,8166	1144	7
4	8557,0536	9999,7174	8557,3362		
5	8560				
6	8563	9999,7082	8564,2912	11435.7088	34
7	8567,4		8567,7274	11432	
8	8570,8357	9999,6988	8571,1368	$11428,863 \mathrm{~L}$	52
9	8574,2139	9999,6941	8574,5197	11425,4802	
0	8577,565	9999,6894	8577,8765	11422	
	8580	9999,6846	8581,2076		
	8584,193	9999,6797	8584,5535		
13	8587,46	9999,6749	8587,7945	$1{ }_{4}$	
14	8590,7209	9999,6700	859100509		
15	8593,	9999,6650	8594,2832	11	
16	8597	9999,6	85974916		
17	8600	9999,	8600,6766		
18	8603		8603,8385	-	
19	8606,	9999,6449	8606,9776		
20	8609,7341	9999,6397	8610,0943	113	
21		9			39
22	8615	9999,629	8616		
23	8618,	9999,62	8619,3127		7
24	8621,9616	9999,6188	8622,3427	11377,6572	6
25	8624,9653	-9999,61 35	8625,3517	11374,6482	3
26	8627.9484	9999,6082	8628	11371,6598	34
	8630,9111	9999,6028	8631,3082	11368,6917	,
	8633,8536	9999,5974	8634,2562	11365,7437	2
9	8636,7764	9999,5919	8637,1844	11362,8155	38
30	8639,6795		8640,0931		
		Sin. 87		Tang. 87	

Tan. 3.	
$\overline{8} 721,806$	
8724,2035	
8,9589$\mathbf{1 , 3 1 7}$	
8733,6631	
8742,922	
8745,2066	
$\left\|\begin{array}{l} 8749,7400 \\ 8751,9892 \end{array}\right\|$	
	8754,2268
8756,483	
8760,8719	
	8763,0646
8765,2464	
	14
8769,5777	
	[8771,7273
877.3.8664	
8775,9952	
	8778,1135
8780,22178782,3198	
8782,3198	
8784,4079	

11280,6042
11278,1937
11275,7964
$11273,4^{123}$
1127,041
11268,6826

11261,6827
52
11259,3742
11257,0777
11254.7933

11252,5207,
11250,2599
47
11245.7738

1x 243 , 5468
11241;3319 11239,2280 11236,9353 11234,7535 11232,5825 11230,4222 11228,2726 11226,1335 11224,0048 1 $1221,886_{4}$ $11219,778=$
11217,6801 11215,5920 11213,5139 TAB.86.

9999, 892 9999,7814 2999,1736 9999,1658 9999,1580 9999,150I 9999,1421 9999, 1342 9999, 1262 9999, 118 I 9999,1 100 9999,1019 9999,0938 9999,0856 9999,8774 9999,0691 9999,0508 9999,0525 9999,044 9999,0357 9999,0272 9999,0188 9999,0102 9999,0017 9998,9931 .9998,9844 99989758 9998.9671 $9998,958_{3}$ 991;8,9496 $9998,940_{7}$ Sin. 86.

Tan. 31
8786,4860
8788,5544
8790,6130
8792,6619
8794,7013
8796,7313
1798,7519
8800,7632
8802,7653
8804,7582
8806,7422
8808,7172
8810,6834
8812,6407
8814,5893
8816,5293
8818,4608
8820,3838
8822,2984
8824,2046
8826,1026
8827,9924
8829,8741
8831,7477
8833,6134
8835,4712
8837,3211
8839,1632
8840,9977
8842,8245
8844,6437

0	8843,5845	9998,9408	8844,643\%	11155,3562	60
1	8845,3873	9998,9319		5	59
2	8347,1827	9998,9230	8848,259	III5I,740 3	58
3	8848,9706	9998,9141	85,50,0565	11149,9434	7
4	8850,7512	9998,905I	8851,8460.	1114821539	56
5	8852,5245	9998,8961	8853,6283	11146,3716	55
6	8854,2	9998,8871		II	54
7	8856,04	9998,8780		III 42,8286	53
8	8857,8010	9998,8689	8858,9321	11141,0678	52
9	8859,5456	9998,8597	8860,685 8	III 39,3141	51
10	8861,2832	29988506	8862,4326	III 37.5673	50
	8863 ,0139	9998,8413	8864,1725		
	8864,7376	9998,8321	8865,9055		48
13	8866	9998,8228	8867,6317	11132,3682	47
14	8868,164	-9998,8135	8869,3511	III 130,6488	46
15	8869,867	9998,8041	8871,0638	III28936i	
	8871,5646	9998,7947	8872,7699	11127,2300	
	8873,	9998,7852		II 125,5306	4
	8874,9380	9998,7758	8876,1622	$11123,837.7$	
	8876,6149	9998,7662	8877, 8487	11122, 513	
	8878,2853	9998,7567	8879,5286	Y1120,4713	4
		9990,7471	8881	11118,7978	39
	8881,6069	9998,7375	8882,		38
23	8883,2581	9998,7278	8884, 5303	III 15,4696	37
	8884,9031	9998, 7181	8886,1849	11113,8150	36
25	8886,5418	$\underline{998}, 7083$	8887,8334	11112,1665	5
	8888,1743	9998,6986	8889,4.756	11110,5243	34
	8889,8006	9998,6888	8891, 1118	11108,8881	33
	8891,4209	9998,6789	8892,742C	11107,2580	32
	8893,0351	9998,6690	8894,366c	IIIO5,6339	31.
30	8894,6433	9998,6591	8895,9841	11104,0158	30
		Sin. 85.			M

8937,3983 8938,8496 8940,2960

9998,6591 9998,6492 9998,6391 9998,6291 9998,6190 9998,6089 9998,5988 9998,5886 9998,5784 9998, 5681 2998,5578 2998,5475 9998,5371 9998,5267 9998,5163 $9998_{35} 058$ 999 9 ,4953 9998,4847 $9998,4,742$ 9998,4635 9998,4528 9998,4422 9998,4314 9998,4206 9998,4098 9998,3990 9998,3883 2998,3772 9098,3662 2998,3552 $\frac{9998,344^{2}}{\operatorname{Sin} .85 .}$

$191 \cdot 4 \cdot$
8895,9841
8897,5963
8899,2026
8900,8030
8902,3977
8903,9866
8005,5697
8907,1472
8908,7190
8910,2853
8911,8460
8913,4012
8914,9508
8916,4951
8918,0340
8919,5675
8921,0957
8923,6186
8924,1362
8925,6487
8927,1561
8928,6581
8930,1551
8931,6471
8933,1340
8934,6160
8936,0929
8937,5649
8939,0321
8940,4943
8941,9517

$\stackrel{\text { M }}{ }$	Sin. 6.	9997,6143	$\frac{\operatorname{Tan}, 6 .}{9021,6202}$	10978, 3797	
1	9020,4348	9997,6010	$\overline{9022}, \overline{8338}$	2	
2	9021,6.317	9997,5877	9024,0440		8
3	9022382.54	9997,5743	9025,2510	10	7
4	202	9997,5609	9026,4548	109	56
5	2025,2027	9997,5475	9027,6552	109	5
6	9026	9997,5340	9028, $\overline{8}$	109	54
7	20275669	9997,5204	9030,0464	10969,9535	53
8	1902S, 7	9977,5069	9031,2372	10968,7627	52
9	9029,9182	9997.4933	9032,4249	10967,5751	51
0	9031,0890	9997,4797	9033,6094	10966,3906	50
	9032,2567	9997,4660	9034,7906	10965,2093	
	2033,4211	9997,4523	2035,9688	10964,0311	48
13	9034,5824	9997,4386	9037,1439	10962,8561	47
1	9035,7406	9997,4248	9038,3158	10961,6841	46
15	9036,8957	2997,4110	9039,4848	10960,5152	
16	9038,0477	9997,3971	9040,6506		
	9039,1966	9997,3832	9041,8134	10958,1866	43
	9040,3424	9997,3693	9042,973 ${ }^{\text {I }}$	10957,0268	42
19	9041,4852	9997,3553	9044,1298	10955,8701	41
20	2042,6249	9997,3413	9045,2836	1095	0
21	9043,7616	9997,3273	9046,4343	109533	39
22	9044,8954	9997,3132	9047, 5821	10952,4178	38
23	9046,0261	9997,2991	9048,7270	10951,2730	37
24	9047,1538	9997,2849	9049,8689!	10950,1311	36
25	9048,2786	9997,2707	9051,0078	10948,9921	
26	9049,4004	9997,2565	9052,1439	10947,8560	34
27	9050,5194	9997, 2423	9053,2771	10946,7228	33
28	9051,6354	9997,2279	9054,4075	10945,5925	32
29	9052,7485	9997,2136	9055,5349	10944,4651	35
30	9053,8587	9997,1992	90.56,6595	00433405	30
		Sirs. 83.			M

	Sinf. 6	
30	9053,8587	2997,1992
	9054,9661	9997,1848
32	9056,0706	9997,1704
33	9.57,1723	5997, 559
34	9058,2711	9997,1414
35	9059,3672	9597,1268
36	9060,4604	9997,1122
37	9061,5508	9997,0976
38	9052,6385	9997,0829
39	2063,7235	9997,0682
40	9064.8057	9997,0534
4 T	9005,0852	9997,0387
42	9066,9619	$9997,0238$
	9068,0359	$9997,0090$
44	9069,1073	9996,9941
45	9070,1760	9996,9791
46	c071,242I	9996,9642
47	9072,3055	9996,9492
	9073,3662	9996,9341
49	9074,4243	9996,9191
50	2075,4749	9996,9039
51	c076,5328	9996,8888
52	9077,5832	9996,8736
53	9078,6310	9996,8583
54	9079,6762	9996,8431
55	9080, 7188	9996,8278
56	9081,7590	9996,8124
57	9082,7966	9996,7970
58	9083,8317	9996,7816
59	2084,8543	9996,7662
60	2085,8944	2996,7507
		Sin.

	$\frac{\sin .}{208}, 8$	9996,7507	\| Tan. 7 9089; 437	10910,8562
1	9086,9221	9996,7351	9090,1869	10999;8130
2	9087,9473	9966,7196	9091,2277	10908,7723
3	9088,9700	9996,7040	9092,2660	10907,7339 57
4	9089,990 3	9996,6883	9093,3020	I0906,69
5	9091, 0082	9996,6727	90943355	10905,66
6	9092,0236	9996,6569	9095,3667	10904,633
	9093,0367	9996;6412	909533955	10903,9045
8	6094,0473	9996,6254	2097,4219	10902,578
9	9035,0556	9996,6096	9098,4460	10901,5539
10	9095,0615	9996,5937	90994678	10903,5322
11	9097,0650	9996,5778	$9100,4 \overline{873}$	10899.
12	9098,0662	979.6,5619	9101,5043	10898,4
13	9099,0651	9.996,5459	9102,5192	10897,4,
14	9100,06: 6	9996,5299	9103,5317	10896
15	9101,0558	9996,5138	9104.5420	1089 1,4580
16	9102,0477	9996,4977	9105,5500	10894
17	9103,0373	9996,4816	9106,5557	10893,4
18	9104,0246	2996,4554	9107,5591	10892,44
19	9105,0096	9996,4492	9108,5604.	10891,4395
20	9105,99:4	9996,4330	9109,5594	108904405
21	910699720	9996:4167	9110,5562	1098),4438
22	9107,9511	9996,4004	91115507	10888,4+92
23	9108,9272	9996,3840	9112,5431	10837,4568
24	9109,9010	9996,;677	914,5333	10886,4666
25	-110, 8726	2996,3512	9114,5314	10835 4785
26	9ini, 8420	9996,3348	915,5072	10884.4928
	9112,8091	9996,3183	9,116,4908	10883,5091
28	9113,774	9995,30ī.7.	9117,4724	10882,5275
29	9114,7570	9995,2851	9118,4518	10881,548I
	9115,6976	9996,2685	9119.4297	10880,5709

M Sin. 7.

$\frac{30}{31}$	9115,6976
31	9116,6561
32	9117,6125
33	9118,5667
34	9119,5188
35	9120,4688

$136 \quad 9121,4166$
37 2122,3624 38, 9123,3061
396124,2476
40 9125,1871
419126,1246 429127,0600
$43 \quad 9127,9533$
$44,6128,9246$
45

46	9130,7812
4.7	9131,7064
48	9132,6296
49	9133,5509

$50 \quad 9134,4702$

5x $9135,3.874$
$\begin{array}{|cc|}52 & 9136,3027 \\ 53 & 9137,2161 \\ 54 & 0138,1275 \\ 55 & 9139,0369 \\ 56 & 9139,9445\end{array}$
$\left\lvert\, \begin{array}{lll}57 & 9140,8500 & 9995,8058 \\ 58 & 9441,7537 & 9995,7882 \\ 59 & 9142,6554 & 9995,7705 \\ \frac{60}{31} & 9143,5553 & \frac{9995,7527}{\operatorname{Sin}, \frac{82}{82}}\end{array}\right.$

	$\frac{5 i n .8}{9143.5553}$	975,7527	$\begin{gathered} \text { Tan. 8. } \\ 9147,8025 \end{gathered}$	
		9995,7350		
2	9145,342	9995,7172	9149,6321	10350,3679
3	9146,243	9995,6993		
4	9147.1	9995,		
5	9148,0262	9995,6635	915	10847,6373
6	9148,9148	99	9153,2692	108
7	9149,801	9995, 275	15	10845,8260,53
8	9150,686	9995,6075	915	10844,923:
9	9151,5694	9995,5914	2155	1084
O	9152,4506	99955733	9156,8773	108
1	9153,3300	999		
12	9154,2076	9995,537	915	10841,3293
13	9155,0834	9995,5188	9159	10840,4353
1	9155,9574	9995;5005	9160,4568	10839,543
15	9156,8295	9995,4822	9161,3473	108
36	9157	9995,4639	16	39
7	9158,5686	9995,4455	${ }^{1} 163,123$	0836,8769
18	9159,	9995,4271	$9164,0 \cdot 8$	10835:9916
	2160;3005	9995,4086	9164,8918	10835,1081
20	9161,1638	9995,3901	9165	ro8
	162	9995,3716	9166,6537	
22	9162	9995,3531	9167,5321	10833,4678
	${ }^{1} 6$	25,3345	2168,4038	10831,5911
	9164	9995,3158	9169,2839	10830,7161
	9165,4544	9995,2972	9170, 1572	1082
	9166	9995,2784		10828
		$9995,2597$	9171,8	10828, 1011
		$2995,2409$	9172,7	
	9168,8559	9995,2221		10826,366
			2174,498	

-1	$\frac{\sin 9}{9217,6092}$	9994,002\%	$\frac{I 6 n \cdot 9}{9223,6065}$	10776
3 I	9218,3634	9993,9815	9224,3819	10775,6180
32	9219,1163	9993,960 ?	2225,1560	10774,843928
33	9219,8679	9993,9391	9225,9288	10774,071127
34	9220,6182	9993,9178	9226,7003	10773,2996 26
35	9221,3671	9993,8965	9227,4705	10772,5294.25
36	9222,5146	9993,8751	9228,2395	10771,7605 24
37	9222,8609	9993,8537	9229,007	10770,9923
38	9223,6058	9993, 8323	9329,7735	10770,2265122
39	9224,3494	9993,31c9	9230,5386	10769,461421
$4{ }^{\circ}$	9225,0918	9993,7893	9431,3024	10768,697520
4 I	2225,8328	9993,7678	9332,0549	10767,9350
42	9226,5725	9993,7462	9232,8262	10767,1737
43	9237,3109	9993, 72.46	9233,5862	10766,4137
44	222S,0480	9993,7030	9234,3450	10765,6549
45	9228,7839	9093,6813	2235,1026	10764,8974
	9229,5184	9393,6596	9235,8588.	$10764, \overline{141}$
47	9230,2517	9993.6378	9236,6139	10763,3860, 13
48	9230,98;8	9993,686.	9237,3077	10762,632212
9	2231,7145	9993,5942	9239,1203	$10761 ; 8796$
50	9232,4440	2993,5723	9238.8717	10761,283
51	9233:1722	9993,5504.	9239,6218	10760,3781
52	9233,8992	9993,5284	9240,3707	107596292
53	9234,6249	9993,5064	924I, 1184	10758.8815
54	9235,3494	9993,4844	9241,8649	10758,1350
55	9236,0725	9993,4623	9242,6102	10757,3897
56	9236,7946	9993,4402	9243,3543	10756,645
37	9237.5153	9993,4181	9244,0972.	10755,9027
58	9138,8348	993,3959	9244,8389	107571610
59	92389531	9993:3737	9245,5794	10754,4205
60	9239,6702	9993,3514	9246,3187	10753,6812
1		Sin. 80		Tan.80. M

	$\frac{\text { Sin.II. }}{9299.6553}$	2991, 9927	\| Tan. II.	10691	
	9300.2757	9991,1669	9309,1088	10590,8912	
	9300,8953	9991,1412	9309.7541	10690,2459	
	9301,5139	9991,1154	9310,3985	10689;6014	
	9302,1317	9991,0895	$9311,042 \mathrm{I}$	10688,9578	
35	5 9302, 7485	-9991,0637	9311,6847	10688,3152	25
	9303,3643	9991,0378	9312,3265		4
	9303,9793	9991,0118	9312,9675	1058	
38	9304,5934	9990,9858	9313,6076	10686,39	
39	9305,2066	9990,9598	9314,2468	10685,7532	1
	9305;8189	9990,9337	9314, 3851	106853114	20
4	- 9306,4302	9990,9076	9315,5226	10684,4774	9
	-9307,0407	9990,8815	9316,1592	10683,8407	
	9307,6503	9990,8553	O316,7950	10683,2050	17
	9308,2590	9990,8291	9317,4299	10682,5701	
	9309,8668	9990,8028	9318.0639	10681,9360	15
	2309,4737	9990,7765	9318;6971	10681,3028	,
	9310,0797	9990,7502	9319,3295	10680,6704	3
	9310,6849	9990,7238	9319,9610	10680,0380	
	9311,2892	9990,6974	9320,5917	10679,4082	11
	9311,8926	9990,6710	9321,2216	10678,75	
51	9312,4951	9990,6445	9321.8506	10678, 493	9
	9313,0967	9990,6179	9322.4788	10677.5212	
	9313,6975	9990,5914	2323,106:	10676,8938	7
	9314, 2974	9990, 5648	9323,7326	10676,2673	
	2314, 8965	9990,5381	9324,3583	106756426	5
	9315,4947	9990,5115	9324,9832	10675,0167	
	9316,0920	9990,4847	2325,6072	10674,3927	
	9316,6885	2990,4580	'9326,2;05	10673,7694	
	9317,2841	9990,4312	9326,8529	10673,1470	
60	9317,8789	$\frac{9990}{\text { Sin }}, \frac{4044}{78}$	$9 \div 27,4745$		

	$\frac{\sin .12}{9335,3367}$	$9989,5815$	$\frac{\text { Tan. } 12 .}{2345.7552}$	$10654,2447$	30
	-9335,9062	9989,5534	9346.3527	10653,6472	9
	: 9336,4748	9989,5254	9346,9494	1065.3i0505	8
	9337,0427	9989,4973	9347,5454	1065.244545	27
$\|34\|$	9337,6098	998., 4691	9348,1407.	10651,8593	6
35	9338,1762	9989,4410	9348,7352	1005152647	25
36	9338,7417	9989,4 127	9349,3290	106506710	24
	9339,3065	9989,3845	9349,9220	10650,0779	
${ }_{3} 8$	9339,8705	9989,3562	9350,5143	10649,4856	
39	2340,4338	9989,3278	9351,1059	ro648,8940	
40	9340,9963	9989,2995	9351,6968	10648,3032	
	9341,5580	9989.3713	9352,2869	10677,7130	19
	9342,1189	9989, ${ }^{4} 2{ }^{26}$	9352.8763	10647.1236	
	9343,6791	9989,2141	2353.4650	10646.5349	17
	9343,2386	9989,1856	9354,0529	10645,947	15
	9343.7972	9989,1570	93,54,6402	10645,3597	
	9344,3552	9989,128	9355,2267	10644,7732	1
	9344,9r23	9989,0998	2355,8125	10644,18>4	1
48	9345,4688	9989,0711	9356,3976	10643,6023	12
49	9346.0244	9989,0424	9356,9820	J0643,0179	
50	9346,5794	9989,0136	9357,5657	10643,434	
	9347,13.36	9983;9848	9358,4.487	10641,85	
	9347,6870	9988,9560	9.358,7310	10641,2689	
5	9348.23.97	9988,9273	2359,3126	10640,6874	
	9348,7917	9988, ${ }^{\text {, }}$ 982	9359.89 .34	10640, 1065	
	9349,3425	9988;8692	9360.4736	10639,5263	
	9349;8934	9988,8402	9361,0531	10638,9468	
	9350,4431	9988,8112	9361,6319	10638,3681	
58	9350,99.21	9988,7823	9362,2100	10637:7900	
	9351,5404	9988.753 C	9362,7874	10637,2126	
60	935250880	9983,7239	9363.364^{1}	10636,6358	
		Sin. 77.		Tan. 77	

- 121	Tan. 14.
9906,934	9396,7710
9986,8726	9397,3089
.9986,8410	9397.8462
.9986,8094	9, 198,3829
9986,7778	9398,9191
9986,7452	9399,4546
.9986,7144	9399,98,96
9986,6826	9400,5240
9.986,6508	9401,0578
9986,6190	9401,5910
. 2986,5872	9402, 2337
9986,5552	9402,65 77
9986,5233	9403,1873
9296,4913	9403,7182
2986,45931	9404,2486
9986;42721	9,94,7784
9986,3951	9405,3076
9986,3630	9405,8363
9986,3308	19406,3644
9986,2986	9496,8919
9986, 2663	94974189
9986,2340	9407,9453
2986,2017	9408,4711
9986,1693	9408,9964
9986, 369	2409,5212
9986,1044	9410,0454
9986,0719	9410,5690
9986,0394	9411,0921
9,480,0058	94156140
9985,9742	9412,1366
9985,9416	9412,6580
Sin. 75.	

106	
10602,6910	59
10602, 1537	5
10601,6170	5
10601,0808	
10600,5453	
1060	
1059	5
1059	5
10598,4089	
$\underline{1} 997 ; 876$	
10597,3442	
10590, 8127	48
20595	47
10595,75	46
10595,2216	45
10594,6923	
10594, 1637	
10593,6356	4
10593,1080	4
10592,5810	40
10592,0546	39
1059r,5288	3
10591,0035	
10590,4787	
ro589,9545	3.
10589,4309	
10588,9075	
10588,38,3	32
10587,8633	3
10587.3419	30
Tan. 7	

\bigcirc	$\frac{\operatorname{Sin}}{9.16}$	99	9457.4964	5	
	9440,7	9982,8053			
2	$244 \mathrm{r}, 2182$	9982,7691		10	58
3					5
4	9442,0964				
5			-	10540,1251	55
6					
7		9982,5870	9460,8231	10539,1768	5
8		9982,5505	9461,2966		5
9		9902,5140	9461,7697		5
0		9982,4774	$94^{62}, 2423$	10537,7576	5
		2982,4407			
		9982,4040	19463,1862	10536,8137	4^{8}
		9083,3673	9463,6576	$10536,342 \cdot 3$	47
		9982,3305	9464,1285	10535;8715	4
15		2982,3937	2464,5989	10535,4010	4
16		9982			
	9447,7586	9982		10	4
	9448,1900	9982,1831	94	10533,9922	42
19		99.82,1461			4
20	9449,0540	9982,1091.	9466,9448	10533,0551	4
				10532,5872	
		9982,0350	9467,8802	10532,1198	
		9981,9979		10531,5527	
		$99^{81}, 9,607$			
25	9451,2036	9931,9235			
		9981;8490	9470	10	
		9981, $\mathrm{El}_{1} 17$	9470		
29		9981,7743	9471,1407		
30	9453,		9471,6048		
				- 7	

	$\frac{\operatorname{Sin} 16}{9453,3418}$	9981.,7369	TAH.16. 9471, 6045	10528,3951	
	9453,7680	9981,6995	9472,068s		
	9454,1938	2981,6620	9472,5318	10527,4681	
	9454,6192	9981,6245	9472,9947	-10527, 0053	7
34	9455,044 ${ }^{\text {I }}$		9473,457.1	10526,5428	
35	9455,4685	9981,5493	9473,9192	10, 26,0807	
	9455,8925				
	9456,3161	9981,4740	9474,8420		
	9456,9392	998r,4363	9475,30		
39	9457,1618	9981,3985	9475,7633		
4	9497,5840	9981,3607	9476,2233	10523,7767	
	9458,	9981,3229	9476,6828	1	19
		9981,2850	9477,1420	10522,8579	
43	9458,	9981,?471	9477,6008	10522,3991	17
44	9459,2683	9981,2091	9478,0592	10521,9407	
45	9459,6883	9931,1711	9478,5172	10521,4827	15
	9460,1078	2981,1331			4
	9460,5269	9981,09.50	9479,4319	10520,5680	3
	9,360,9456	9981,0569	9479,8887	10520,1112	2
	9461,3638	9981,0187	$9480,345^{1}$	$\operatorname{105} 19,6549$	1
	9461,7816	9980,9805	2480,8010	10519,1989	0
	9462,1989	9980,9423	9481,2560		9
52	9462,6158	9980,9040	9481,7118	105IS,2881	8
53	9463,0323		9482,1066		
	9463,4483	9980,8273	9482,6209		6
55	9463,8638	$\underline{9980,7889}$	9483,0749	105	5
50	9464,2790	9980,7504	0483,5285		4
5	9464,6937	9980,7120	9483.9817	$10516 ; 0182$	
58	9465,1080	9980,6734	19484.4345		2
	9465,5219	9980,6340			3
	9465,9353	9980,5963	9485,3.390		\bigcirc
		Sim. 73.1			M

0	$\frac{\operatorname{Sin} .17}{9465,9353}$	9980,5963	$\int \frac{T a n, 170}{9485,3390}$	10514,6609	
1	9466,3	2980,5576	9488,7906	IO	59
	9466,7609		948	10513,7580 5	58
3	94671730	9980, 4802	9486,6927	10513,3072 5	57
4	9467,5847	$9980,4415$		10512,85675	56
5				10512,40665	55
6	9168,4	9980,3638	9488,0430	10	54
7	2468,8873	9980.3249	9488,4923	10111,5076	. 53
8	9469,2233	9980,2860	9488,9412	10511,05875	752
	2459,6369		9489,3898	10510,6101 5	51
	9470,0460	9980,2080	9489,8380	10510,1619	95
	9470,4548	9980,1690	9490,2853		2
	9470,8631	9980, 299	9490,7332	$10509,2568$	848
13	9471,2710	9980,0908	9491,1802	10508,8197 4	747
1	9471,6785	9980,0516	9491,6268	10508,3731 4	146
15	9472,0856	0880.0124	9492,0731	10507,9268	8
	9472	9979,9732			9
17	9472,8984	9979,9339	9492,9645		443
	9473,3042	9979,8245		$10506,5903$	3.42
19	947337096	9979,8552	9493, 5544	10506,1455	5
20	2474, 1146	9979,81.58	9494,2988	10505,7011	
21	9474,5192	9979,7763	9494,7428		
	9474,9233	9979,7368	9495,1865	r0504, 81 35	5
23	9475,3271	9979,6973	9495,6297		
	2475,7304	9979,6577	9496,0726		
25	9476,1333	9979,6181	9496,5152	$10503,48+8$	
	2476,5358	9979;5785	9496,9573	10	
	9476,9379	9979,5388	2497,3991	1,502,6008	
	9477,3396	9979,499 ${ }^{\circ}$		10502,1594	4
	9477,7409	9979,4593	9498,2816	$\cos 01,7183$	3
30	9478,1418	9979,4195	9498,7223	10501,2777	730
				2 an. 7	

0	$\frac{\sin .18}{9+89.9823}$	$2978, \overline{206}$	$\frac{\operatorname{Tan} .180}{9511,7760}$	10488,2239	
	9\%903709	9978, $\overline{1652}$	9512,2057	10487,7942	59
	9490.7 .592	9978, $\mathrm{r}^{2} 4 \mathrm{I}$	9512,6350	1048713649	
3	9491,1470	9978,0830	9513,0640	10486,9359	7
4	9491,5345	9978,0418	951384927	10485,5073	6
5	9491,9216	2973,0005	9513,9210	10485,0789	
	9492,3083	9977,9593	9514,340	10485,6510	4
7	9492,6946	9977,9180	9514,7766	1048	,
8	9493,0805	4977,8766	9515,203.9	$\underline{1048}$	2
9	9493.4661	9977,8352	9515,6308	$\mathrm{ra}_{4} 8$	58
10	$9+93,8513$	9977.7938	9516,0575	10-483,9424	
II	9494:2361	9977,7	9516,4838.	10483,5162	
12	9494,6205	9977,7108	9516,9097	10	
13	9495,0046	9977,6692	9517,3353	10482	7
${ }_{4}$	9495,3882	9977,6276	9517.7606	10482,2	
15	9495,7715	9977,5860	9518,1855	$1 \mathrm{IO}_{4} \mathrm{fl}, 8 \mathrm{I}$	
16	9496, 1544	9977,5443	9518,6101	10.481	
17	9496,5370	9917,5026	9519.0344	10480,9656	43
18	9496,9192	9977,4608	9519,4583	10480,5416	42
19	9497,3010	9977,4190	9519,8819	10480, 1180	$4{ }^{1}$
20	9497,6824	9977,3772	9520,3052	10479,6947	
21	9498,0635	9977,3353	9530,728I	10479,2718	
22	9498,4442	9977,2934	9521,1507	10478,8492	38
23	9498,8245	9977,2514	9521,5730	10478,4269	7
24	9499,2044	9977,2054	9521,99<0	10478,0050	6
25	9499,5840	9977,1674	9522,4166	10477,5833	35
26	9499,9632	9977,1253	9522,8379	10477,1620	4
27	9500,3421	9977,0832	95:23,2589	10476,7411	-
28	9500,730;	2977,0410	9523,6795	10476,3204	32
29.	9501,098?	9976,99§8	9524,0998	10475,9001	,
3	9501, 4764	9975,9565	9524,5198	10475,4801	30
		Sin. 71.		Tang. 71	M

	9512, 6419		Tan. 19.	10463,0281	60
	9513				
	9513,3	9975,5829	9537,7	10462,2079	
3	9513,74	2975,5393	9538,2016	10461,7983	57
4	9514,1067	2975,4957	9538,6109		
5	9514,4720	9975,45	9539,0200	10460,9800	
6	9514.8		95		
7	9515,30	9975,3645	9539,8371		
8	9515,56	2975,320]	9540,2452	104	
9	9515,9299	9975,2769	9540,6530	10459,3469	51
-	9516,2936	9975,2330	9541,0606	104	
II	9516,6		9541,4678		49
12	9517,0198	9975,1451	9541,8747	10	
13	9517,382	9975,1010	9542	104	
	2517,7447	9975,0570	9542,6876	104	
15	9518	9975,0029	2543,0236	1045	
16	9518,	9974,9688		1045	
	9518,829	9974,9246	9543,9048		
	9519,19	9974,	9544,3099		4^{2}
19	9519,5509	9974,8361	9544,7148		$4^{\text {i }}$
	9519,9112			10	
21	9520		9545,5236		
	95	9	9545,9275		
	9520,989	997	2546,3312		
	9,521,3488	9974,6142	9546, 7346	1045	
25	9512,7073	9974,5697	9547,1376	10452,862	
	2522,0656		2547,5404	-452,4525	34
	2522,4235	9974,4805	9547,2429	10452,057	
	9522,7811	9.974,4359	0548,3451	10451,654	
	9523,1383	9974,3912	9548,7470	10451,2529	1
30	9523,4952	9974,3465	9549,1487	3	30
		.		Tan.70.	

	o
	 がN N N M 亿o＋o t

	$\frac{5554.3291}{951}$	9970,1517		5	60
4	9554, 6581	99			
2	9554,98	9970			8
3	9555,3151	9970	9585,3091		57
4	9555,6433	2969,9574	9585,6858		6
5	9555.9711	9969,9087	9586,0623	$10413,937^{\circ}$	5
6	9556,20	9969,8600	9586:4386	10413,5613	54
7	9556,6259	9969,8112	9186,8146	1048	53
8	9556,9528	9959,7624	9587,1904	10412,8095	52
9	9557,2795	9969,7135	9597,5659	10412	52
10	9557,60	9969.6647	9587,9412	104	
1 I	9557	9969,6157			
12	9558,2570	9969,5657	9588,6917	10411	48
	9558,58	9969,5177	9589,0657		
1	9558	9959,4686	9589,4401		
15	9559,2337	996	9589,8148		5
16	955	9969:3704	9590,1880	104	
	9559,8829	9959,3212	6590,5617		
:8	9560	9969,	9590		
	9560,5309	9969,2227	9591,3		4
20	9560,85.46	9969,173	9591	10	
22	956	9969	9592,05		
22	9561,5009	9969,0746	9592	1040	
23	9561,8237	9969,0252	9592,798s	10407,20	
	9562,1462	9968,9757	2593,1705	10406,82	
25	9562,4634	9968,926:	9593,5422	10406	
	9562,		9593		
	9563,	9968,8270	9594,285	10405,714	
	956	9968	9594,6561	10405,343	
	9563,7565	9968,7276	9595,0269	10404,973	
30	9564,0754	9968	9595.3975		3
		Sin. 68.		Tan. 6	

\cdots	$\frac{\sin .22}{9573,5754}$	9967, 1658	Tan. 22.	10393,5904 60
	9573;8879	9967,1147	9606,7731	10393,2268 . 59
	95:742002	9957,0636	9607,1365	$10392,8634.58$
	9574,5122	9967,012;	9607,4997	10392,5002 57
	2574;8240	9966,9613	9607.8627	10392,137256
	9575,1355	-2966,910:	9608,2254	10391,7245
6	9575,44	9960,8588	9608,5879	1.03
	9575,7578	9966,8075	9608,9502	10391,0497
8	9576,0685	9,965,7561	9609,3123	10390,6876
	9576,3789	9956,7047	9507,6742	10390,3257
,	9576,69,2	, 9966,6533	2610,0359	10389,9641
11	9576,9991	9956,6018	9510,3973	10389,
12	9577,3:88	9966,5502	9610,7585	10389,24
13	9577,6182	9966,4987	961r,it95	10388,880
4	9577,9274	9966,4470	9611,4803	10; 88,519
15	9578,2363	9966,3954	9611,8409	10388,1590
16	9578,5450	9966,3437	9612,2013	10387,798
17	9578,8534	9966,2919	9612,5614	10387,4385
18	9579,1616	9966,2401.	9612,9214	10387,0785
19	9579,4695	9966,1883	9613,2812	10386,7188
20	9579,7771	9966,1364	9613,6407	10386,359,3
21	9580,0845	9966,0845	961, 4,0000	10386,000
22	9;80,3916	9965,0325	9614,3591	10385,6409
23	9580,6985	9965.9805	9614,7179	10385,2820
24	9581,0051	9965,9285	9615,0766	$10384,9233.36$
25	2581,3115	9965,8754	9615,4351	$\underline{10384,5648}$
26	9581,6176	9965,824i	9615,7933	10384,2066 34
	9581,9235	9965,7721	9616,1514	10383,8485 [33
28	9582,2291	9965,7199	19616,5092	10383,4907
89	9582,5345	9965,6670	9616,8669	10333,1331
30	9582,8396	9965,615,	9617,2243	10382,7756

	$\operatorname{Sin} 23^{\circ}$	
	$9591,8780$	9964,0260
1	9592,1755	9963,9724
2	9592,4727	
3	9592,7697	9,63,8650
	9593,0605	
5	2593,363:	99653,7574
6	9593,6594	2963.7035
7	2593,9554	9963,6496
8.	9594,2512	2963:5957
9	9594,5468	2963,5417
O	9594,8422	2965,4870
T	9595,1373	2963,4335
12	2595,4321	9963,3794
13	9595,7268	9963,3253
14	9596,0212	9963,2710
15	9596,3153	9963,2169
16	9596,6093	9963, 162
17	9596,9030	9263,1081
18	9597,1964	2963,0538
19	9597,4896	9962,9993
20	9597:7826	9962,9443
21	9598,0754	9962,8904
22	9598,3679	9962,8358
23	9598,6602	9962, 7812 2
	9598,9522.	9962,7265
25	9599,2440	9962,6718
26	9509,5356	9962, 6171
27	9599,8270	9952,5623
28	9600, 118	9962,5075
29	9600,4090	9962,4527
30	9600,6997	9962,3977
		Sin. 66.

$Y^{T a n .23 .}$
9628,5 540
9628,9047
$9629,2553$
9630,305
9630,6559
963t,005
${ }^{2635} \times 3548$
9631,7037
9632,0527
9632,4015
9632,7501
963.3 .0985
9633,4467
9633.7948
9634,1426
$\begin{aligned} & 9634,4903 \\ & 9634,837 \end{aligned}$
963,5,532r
$\left\{\begin{array}{l} 9638,4790 \\ 9636,2256 \end{array}\right.$
9636,9185
9637,2646
9637,6105
963792563
2638,3019

Six. $23 \cdot$ 9600,9901 9601,2803 scoi, if0i 9601,8600 9602,1495 9602,4387 gโㅇ2,7278 9603,0166 9603, 3052 9603,5936 9603,8817 9604,1696 9604,4573 9604,7447 9605,0319 9605,3189 9605,6057 9605,8922 9606,1786 9606,4646 9606;7505 9607,0362 9607,3216 9607,6068 2607;89:8 9608,176; 9608,7453 9609, 0294 9609,3133

	Ta
9.962,3977	9638,5019
$\begin{aligned} & 962,3428 \\ & 9962,2878 \end{aligned}$	$\left\lvert\, \begin{aligned} & 2638,6472 \\ & 9638,992 a \end{aligned}\right.$
9396, 9328	
9962,1477	9639,6823
9962,8225	9040,0269
9962,0674	9640,3713
9962,0122	9640,7156
9961,9569	9641,0597
996:9016	9041,4036
9951,8463	9641,7473
9961,7909	9645,0908
9961,7354	96425434
9961,6799	9642,77>3
9961,6244	9643, 1
9961,5689	96434630
9961,5133	9643,805
9961,4576	9644,1
9961,4019	9644:49
9961,3462	9644,832
9961,3904	9645, 174
9961,2346	9645,51
9961, 1787	$9645{ }^{8}$
9961, 1228	9646,198
9961,0668	9646,539
9961,0108	9646,880
9960,9548	9647, 221
9960,8987	9647,562
9960,8425	9647 .902
9960,7863	9648,343
9960,730:	2648, 58
Sin.	

	$\frac{\sin .24}{9617.7269}$	9959,0229		10341;2959	
3 I	9618,0040	9958,9653	9659,0387	10	
	9613,2809	9958,9076	9559,3712	10340,6267	28
3.3	961,8;5576	9958,8500	9 59.37076	10340	27
	9678,8340	995857922	95603048	-1033939	26
35	9619,1103	9958.7.34	9560,3758	10339,62	25
36	9619,3853	9958,6766	9650,7097	1033	
	9619,6622	9958,6188	1966 $6,043: 4$	103:38	
	9619,93.78	9958,5609	9561,3759	10338	
39	9620,2132	9958;5029	9561,7102	10338,2897	
40	$\underline{9620,4884}$	9758,4449	966,2,0434	1033799505	
	9520,7633	9958,3869	9662,3764	10337,623	9
42	9621,0381	9958,3288	9662,7093	10337:2	
43	-962 $5,3: 27$	9953,2707	96	103.36,	
44	9621,5870	9758,2125	966	(10336,6254	
45	9621.8612	-9958,1543	9563,70	10336,2931	
46	9522,1351	9958,0960	9664,0390	10335,950,	4
47	9622,40S8	9758,0377	9664,371	$\mathrm{rO}_{3} 35,6289$	13
48	9622,6823	19957,9794	9664,7029	10335,2970	12
49	9622,9556	9957,9210	9655,0346	10334,9653	11
5	9623,2287	9957,8625	19565,3661	10334,6338	
51	9523,5016	9957,8040	9565,6975	10334,3024	
52	9623,7743	9957,7455	9666,0287	10333 ,9712	
53	962 4; 0467	9957,6969	9666,3598	10333,6401	
	952.4,3190	9997,6283	9666,6906	10333,3093	
55	2624,5911	9557,5627	9667,0214	10332,9785	
56	9524,8629	9957,5109	9567,3519	10332,6480	4
	9525,134;	9957,4522	9667,6823	10332,317	
	9525,4060	9957,3934	9668,0125	$1033^{\text {² }} 9{ }^{\text {² }} 74$	2
59	962 5,6772	2957,3340	9668,3426	10331,6573	1
60	9625;9482	9957,2757	2668,6725	1033 193274	
		Sir. 6			

2	$\frac{\operatorname{Sin} .25 \cdot 1}{9625,9482}$	9957,2757	9668,6725	10331,3274	
1	9626,2190	9957,2167	9660,0023		
2	9626,4897	9957,1578		10330	
3	9626,7601	9957,0987	9569,6613	10330,3	87
4	9627,0303	9957,0397	966909905	10330,0094	
5	9627,3002	9956,9806	9670,3196	10329,6803	
6	9627,5700	9956,9214	9670.6486	103	54
7	9627,8396	9956,8622	9670,9774	10329,0225	3
8	9638,1090	9956,8030	9671,3060	10328,6939	3
9	9628,3782	9956,7437	9671,6345	10328,3655	1
10	9628,6471	9956,6843	9671,9628	10328,0371	50
II	9628,9159	9956,6250	9672,2909	103	
12	9629,1845	9956,5655	19672,61	10327	4^{8}
13	9629,4520	9956,5061	9672,9468	$10327,053^{2}$	4
14	9629,7210	9956,4465	19673,2744	10326,7255	46
15	9629,9890	9956,3870	9673,6020	10326,3980	
16	9630,2567	9956,3274		103	4
17	9630,5243	9956,2677	9674,2565	10325,7434	3
18	9630,7917	9956,2080	9674:5836	10325,4:63	42
19	9631,0588	9956,1483	9674,9105	10325	4
20	9631,3258	9956,0885	9675,2372	$10.324,76$	
21	9631,5935	9956,0278	9675,5638	10324	8
22	9631,8591	9955,9588	9675,8902	10324	8
23	9632,1254	9955,9089	9676,2165	10323,7834	
24	9632,3916	995 5,8489	9676,5426	10323,4579	
25	9632,6575	9955,7889	9676,8689	10323,1313	5
26	9632,	995527289	9677,1944	10322,805	
	9633,1888	9955,668	9677,5 200	10322,4799	
	9633,4542	9955,6086	9677,8455	10322,1544	32
29	9633,7194	9955,5484	9678,1709	10311,8i90	1
30	2633,9843	9255,4882	9678,4962	10321,5038	30
		Sin.64.		Tan. 6	

$\frac{\mathrm{M}}{0}$	$\frac{\operatorname{Sin} .26}{9641,8419}$	9953,6601	$\left\|\frac{\text { Tan. } 26 .}{9688,1817}\right\|$	10311,8182 60
1	9642, 1008	9953, $\overline{5985}$	9688,5023	10318,4976 59
2	9642,3596	9953,5368	9688,8227	10311,1772 58
3	9542,6181	9953,4751	9689,1430	$10 ; 10,8569.57$
4	9642,8765	9953,4133	9689,463I	10310,536856
5	9643,1346	9953,3515	9689,7831	10310,2168
6	9643,3926	9953,2896	9690,1029	10309,897054
7	9643,6504	9953,2277	9690,4226	10309,5773 53
8	9643,9080	9953,2658	9690,7422	10309,2578_52
9	9644,1654	9953,1038	2691,0616	10308,$9 ; 84$
10	9644,4226	99.53,0417	9691,3808	10308,6191 50
II	9644,6796.	9952,9795	9691,6999	10308,3000
12	9644,9364	9952,9175	9692,0189	10307,981048
13	9645,1931	9952,8553	9592,3378	10307,6622
14	9645,4495	9952,7931	9692,6564	10307,343546
15	9645,7058	9952,7308	9692,9750	10307,0249
16	2645,9619.	995,2,6685	9693,2934	10306,7065
17	9646,2178	9952,6061	9693,6116	I0306,3883 43
18	9646,4735	9y52,5437	9693,9298	$10306,0702,42$
19	9646,7290	9952,4812	9694,2478	10305,7522,41
20	$\underline{9646,9843}$	9952:4187	96942.5656	10305,434340
21	9647,2395	9952,3562	9694,8833	10305
22	9647,4944	9952;2936	9695,2008	10304799138
23	9647,7492	9952,2300	9695,5182	10304,4817 37
24	9648,0038	$99.5,1082$	9695,8355	10304,1644, 36
25	9648,2582.	9952,1055	9696,1526	$10303: 8473$ 35
26	9648,5124	9.952,0427	9696,4696	10303,5303 34
27	9648,7664	9951,9799	9696,7865	10303,213433
28	9649,0203	9951;9170	19697,1932	10302,8967 32
29	9649,2.739	99518541	12697,4198	10302,5801131
30	9649,5274	9951,7914	9697.7362	10302,2637 30
		Sin. 63.		Tang. 63 M

	1r.26.		T		
30	9640,5:74	9951,7911	96977362	10302,2637	
$3{ }^{1}$	3609,7807	2951,7281	$9698 ; 0525$	10301,9474	
32	9850, 6338	9955;665	9698,3687	10301,6312	8
33	9650,2867	9951,6020	9698,6842	10301,3152	27
	9650,5394	9988,5388	2699,006	10300,9993	6
35	9650,7920	2951.4756	96993163	10300,6836	25
36	9651	99	9699;6319	10300,3680	24
37	9351,2985	$99 \$ 1.349$	9692,9474	10300,0525	3
	9651,5485	995 9 , 28,58	9700,2627	10299.7372	22
39	9651,8004	9951,2224	9700,5779	10299,4220	21
40	9652,0520	9951,1590	9700,8930	102991069	
4	9652	9951	9701,2019	10298.7920	19
42	9652,5547	9951,0320	9701, 52.27	10298,4773	IS
43	9652,8058	9950,9684	9701,8373	10298,1626	17
44	9653,0567	9950,9048	9702,1518	10297, 8481	16
45	9653;5075	2950,8412	9702,4663	10297.5337	
4^{6}	9653,5580	9950,7775	9702,7805	102972124	14
	$26.53,8084$	9750,7137	9703,09,46	10206,905.	3
48	9654,0586	9950,6499	9703,4086	10296,5913	12
49	9654,3086	9950,5861	9703,7224	102965775	II
50	2654,5584	9950,5222	2704,0351	102959638	
51	9654,8080	9350,4583	9704,3427	10295,6502	9.
52	2655,0575	9950,3943	9704 6631	10295,3368	
53	9655,3068	9950,3303	9704,9764	10295,0235	
54	965515559	9950,2662	9705,2896	10294, 7103	-
55	9659,8048	9950,2021	9705,6026	10294,3973	
56	9656,0535	9950,1380	9705,9155	10294,0844	
57	9656,3021	9950,073	9706,2283	10293,7716	
58	9656,5505	9950,0095	9706,5410	10293,490	
	9656,7987	9949,945 2	9706,8535	10293, 1464	1
	9657;0467	994	9707,165	$10292,834 \mathrm{~L}$	\bigcirc

	$\frac{\sin .27 \cdot}{9657.0467}$	9949,8808	(Sin. 27.	10292,8341	60
	657.2946	9949,8165		10292.5218	59
2	9657.5422	9949,7520	9707,7902	10292.2097	58
3	9657.7897	9942,6875	9708.1022	102	57
4	2658.0371	9949,6230	9708.4140	1029	56
5	9658.2842	9949,5584	9708,7257:	10291.2742	55
6	9658,5312	9949,4938	9709,037	1029	54
7	9658,7779	99.49.4291	9709,348,	10290,6511	53
8	9659.0246	9940,3644	9709.6601	10290.3398	5
9	9659,2710	9949.2996	9709.9713	10290,0286	51
10	9659.5172	99492348	9710.2824	10289,7176	
II	9559.7633	9,949, 1700	9710,5933		49
12	9660,0092	9949.1051	9710,9041	10289,0958	48
13	9660.2549	9949.0401	9711,2148	$10288.78{ }_{1}^{1}$	47
${ }_{4}$	9960.5005.	9948.9751	9711,5253	10288.474	
15	9660, 7459	9948,9108	9711.8357	10288	45
16	9660.9911	9948.8450	9712.146	102	
17	9661,2361	9.948 .7799	9712,456	102	
: 8	9661,4809	9948,7147	9712,7662	1028	
19	2661,7256	9948.6495	9713.0761	10286	
20	9661,9701	9948,5842	9713.3859	10286	
28	9662,214	9948,5189	97, 3,6955	102	
22	9662,4506	9948.4535	9714, 4 cos?	r0285	
23	9652,7026	9948,3881	9714.3144	10285.6855	
24	$9662.9+64$	9948.3226	9714.6237	10285.3762	
25	9563.1900	9948.251	9714, 329	10285,0671	
26	9663,4335	9948,1976	9715.2419	10284,7581	3
27	9663,6767	9948.1260	9715,5.507	10284.4492	
28	9663,9199	9948.0503	9715,8595	10284,140	
29	9664.1628	9947,9946	9716.1681	10243.83 I	
30	9664,4056	$9 ?$	9716,4766	10283,5233	
		Tan. 62.		TAn. 6	

H 2

 \square 9698,9700 9699,1897 9697,4073 9649,6257 9699;844ㅇ 97000622 9700, 2802 9700,498 9700,7158 9700,9533 2701, L508 2701,3680 9701,5852 9701,8021 9702,0190 9702,2357 9702,4522 9702,6686 9702,8849 9703,10 10 $2703,3^{1} 70$ 9703,5328 9703,7485 9703,964 9704, 795 9704,3947 9704,6098 9704;8248 9705,0396 970522543 9705,4698

9937,5306 9937,3845 9937,3116 9937,2385 9937,1653 9937,0921 9937,0188 9936,9455 9936,8722 9936,7988 9936,7293 9936,6518 9936,5783 9936,5047 9936,4310 9936,3573 9936,2836
9936,2098 9936,1359 $\frac{9936,0620}{9935,986 \mathrm{r}}$ 2935,914: 9935,8400 9935,7659 9935,6918 2935,6176 9935,5434 9935.4691 $9935,39+7$
$9935 ; 3203$ $\frac{9935 ; 3203}{\text { Sin. } 59 .}$

Tan. 30.
9761,4393
9761,7310
9762,0226
9762,3141
9762,6056
9762,8969
$9763,188 \mathrm{l}$
9763,4792
9763,7702
9764,061
9764,3520
9764,6427
9764,933
9765,2238
976,5143
976,8046
$9766,0,949$
9766,3850
9766,6751
6766,9651
9767,2549
9767,5447
9767,8344
9768,1240
9768,4135
9768,7029
9768,9922
9769,2814
9769,5705
9769,8595
9770,1485

10238,5606
10238,2689
10237,9773
10237,6858
10237,3947
10237,1031
10236,8118
60
5
5
5
5
5
5
10236,5:207
10236,2297
10235,9388
10235,6480
1023523572
10235,0666
10234,7761
$-10234,4856$
IO234, 993
10233,0050
TO233,6t40
T0 233, 2248
10232,0349 TO2 22.7450
$10232 \in 5$ T0.232,TOE5
10231,8759
1023r,5864
10231,2971
10231,0078
10230,7185
10230,4294
10230,1404
10229,8515
Tan. 9.

34
33
32
31
30
M

51 $\rightarrow+\left.\infty\right|_{0} ^{n}$

47 46 45 | 44 |
| :--- |
| 43 |
| 4 |
| 4 |
| 4 |
| 4 | 38

37 35

	$\frac{518.30}{9705,4688}$	9935,3203	$\begin{aligned} & \text { Tan. } 30 \\ & 9770,1485 \end{aligned}$	10229,8515	30
31	970, 683	2935,2459	9770,4373	10:29,5626	29
	9705,8975	2935,1714	9770,7260	10229, 2732	28
	9706,1116	9935:0959	9771,0147	10228,9852	27
34	9706,3256	9935,0223	9771,3032	10228,6967	26
35	9706,5394	2934,9477	9771,5917	10228,4082	25
36	9706,753x	9934,8730	9771,8801	10228, 3198	24
	9706,9666	9934,7982	9772,1684	10227,8316	23
38	9707,1800	9934,7234	9772,4565	10227,5434	22
39	9707,3933	9944, 6486	-9772, 7446	10227,2553	21
40	2707,6064	9934,5737	9773,0327	10226,9673	20
	9707,8194	9934,4988	9713,3206	10226,6794	19
42	9708,0322	9934,4238	9773,6084	10226,3915	13
43	9708,2449	9934,3488	9773,8961	10226,1038	17
44	9708,4575	9934,2737	9774,1838	10225,8162	16
45	9708,6699	9934,1986	9774.4713	10225,5286	15
6	9708,8822	99;4, 1233	2774,7588	10225,2411	4
	9709,0943	9934,0481	9775,0461	10224,9538	13
48	9709,3063	9933,9728	9775,3334	10224,6665	12
49	9709,5181	9933,8975	9775,6206	10224, 3793	II
50	9709,7298	9933,8221	9775,9077	10224,0922	0
51	9709,9414	9933,7467	9776,1947	10223,8052	9
52	9710,1528	9933,6712	9776,4816	10223,5183	8
53	9710,3641	9933,5957	9776,7684	10223,2315	7
54	9710,5753	9933,5201	9777,0552	10222,9448	6
55	9710,7863	9933, 4445	9777,3418	10222,6581	5
	9710,9972	9933,3688	9777,6284	10222,3715	. 4
57	9711,2079,	9933,2931	9777,9148	10222,0851	3
58	9711,4185	9933,2173	9778,2012	10221,7987	2
	9711,6290	9933,1414	9778,4875	1022155124	I
60	9711,8393	2933,0656	9778,7737	10221,3262	a
		Sin.59.		Tan. 99.	1.

(M) Sin. 31.

0	9711,8393
1	9712.0495
2	9712,2595
3	9712.4694
4	9712,6792
5	9712,8888

9713,0983 9713.3077 9713.5169 9713,7260 9713,9349 9714,1437 97143524 9714,5609 9714,7693 9714,9775 9715,1857 9715.3936 9715.6015 9715.8092 9716.0168 $97^{16.2242}$ 9716.4315 9716,6387 97168457 9717,0526 2717,2594 9717.4660 9717.6725 9717,8788 $-9718,0851$

9933,0656
9932,9896
9932.9136
9932,8376
9932.7615
9932.6854
9932.6092
9932,5330
9932.4567
9932,3804
9932,3040
9332,2275
9932.1511
9932,07432
9931,9979
9931,9213
9931,8446
9931.7679
9931,6911
9931.6143
9931.5374
99931.4604
9931,3835
9931.3064
9931,2293
9931.1522
9931.0750
9930.9978
9930,9205
9930,8431
9930.7657
7911.58.

M - 5.3 .31. $30 \quad 9718,0851$

9718,2912
9718,4971
9718,7039
9718,9086
9719,1142
9719,3196
9719,5249
9719,7300 9719,9350 9720, 1399
2720,3446
9720,5493
9720,7537
9720,9581
9731,1623
9721,3664
9721‘570;
9721,7741 9721,9778
9722,1814
$97^{22}, 3848$
9722,5881
9722,7913 9722,9943
9723,1972
9723,3999
9723,6026 9723,8051 9724,0074 9734,2097

	Sin. 32		Tan. 32.	
	9724,2097	99	9795,7892	
	9724	9928,3415	9796:0703	
	9724,6138	9728,2625		1026
	9724,8156	9928,1834	9795,6322	
	9725,0173	9928,1043	9796,9130	
	9725,2i89	9928,0251	9797, 1938	$\underline{10202}$
	9725,	9927	9797:4	10
	9725,6217	9927,8666	9797,	1020
	9725,8229	9927,7873	9798,0	
	9726,0239	9927,707,	9798,3160	
10	9726,2249	9927,6285	9798,5964	1020
1	9726,4257	9927,5490	9798,8766	10
	9726,6263	9927,4695	9799,156	1020
13	9726,8269	9927,3899	9799,43	10200
4	9727,027	9927,3103	9799,71	10200
	9727,227	9927,2306	9799,99	10
16	9727,427	9927, 1508	9800, 276	10199
17	9727,627	9927,0711	9800, 5	1019
	9727, 827	9926,9912	9800, 836	IO19
20	9728,027	9926,9113	9801,1161	
20	9728,2271	9926,8314	${ }^{9801}$, 3957	IoI
21	9728,4266	9926,7514	9801,675	10188
22	9728,626	9926,6713	9801,954	1019 ${ }^{1}$
23	9728,825	9926. 5913	980, 2, 314	10197,
24	9729,0244	9926,5111	9802,513	10197
25	9729,223	9926,4309	9802,7924	10197,2075
26	9729,	9926	9803,0716	ror 96,9283
[27	9729,62	9926,2704		10196,6403
128	9729,819	9926,1900	19803,6296	10196,3703
29	9730,0181	9926,10, 6	\|9803,9085	
	$\underline{9730,2165}$		19804, ${ }^{1873}$	10195

	$\frac{\text { Sin. } 33}{9741,8895}$	9921,1066	9820.33	10179,2171	
	9742,0803	9921,0229	9821,0573	10178,9426	
	9742,2710	9920,9392	9821,3317	10178,6682	
33	9742,4615	9920,8555	9821,6060	10178,3939	
	9742,6520	9920,7717	9821,5803	10178,1197	
35	9742,8423	9920;6878	9822,1544	10177,8455	
	9743.0325	9920,6039	9822,4286		44
37	9743,2226	9920:5199	6822,7026	10177,2973	+
	9743,4125:	9720,4359	9822,9766	10177,0233	
	9743,6024	9920,3519	9823,2505	10170,2494	4
40	9743,7931	9920,2677	9823,5243:	10176,4756	d
	9743,9817	9920,1836	9823,7981	10176,2018	8
		9920,0993	9824,0718	10155,9281	1
	9744,3606	9920,0151	98243455	1 or 75,6545	S
	9744,54.78	9919,9307	9824,6190	101 75,3802	
4.	9744,7389	9919,8465	9824,8925	10475.1074	
	9744,9	9919;7619	9825,1660	$10174,8339$	9
	9745,1168	9919,6774		$10174,5605$	5
	9745,3056	9919,5920	9825,7127	10174,2872	2
			9825,9859	10174,0140	0
	9745,5828	9919,4236	9826,2591	10173,7408	
51	9745,8712	9919,3,39	9826,5322	$\overline{10173,4677}$	
5	9746,0595	9919,2542	19826,8053	10173,1945	
53	9746,2477	9919,1693	9827,0783	10172,9216	
54	9746,4357	9919,0845	98273512	10172,6487	
	9746,6237	9218,9996	9827,6241	10172,3758	8
56	9746,8II5	9918, $7^{1} 4^{6}$	9827,8969	10172,1030	
	9746,9992	9918,8296	9828,1696	$10171,8303$	
58	9747,1868	9918,7445	9828,4423	10171,5576	
59	9747,3743	9918,6594	9828,7149	10171,2850	
6.	9747,5616	9918,5742	9828,9874	$\frac{10171,0125}{T a n}$	5

	$\frac{\text { Sin. } 34 .}{9747,5616}$	$9918,5742$			
		9918,4889			
		9918.4036	98	10170,4676	
3		9918,3183	9829,8046	10170,1953	
4	9748,3099	9918,2329	5830,0769	10169,9230	
5	9748,4966	9918,1474	9830,3491	10160,650	
6	\%	9918,0619			
	27, ${ }^{2}$	9917,9764	98	101	
8	9749,0562	9917,8908	98	1016	
	974	9917,8051	9831,4374		
10	974	9917,7194	9831,7093		
11	974	9917,6336		10168,0188	9
12	974	99	983		8
13	9749		9832		
14	9750, 1	9917	9832		
15	9750,	9917	983	1016	
16	97		98		
17	9750,7287.	9917,1178	9833,6108	10166	
18	9750,9140	9917,0317	9833,8822)	4^{2}
19	9751,	9916,9455	9834,1536		
	9751,2841	9916,8592	28344342	1016	
	9751,	9916,7729		1016	
	9751,6	9916,6865	9834,9672	10165	
23	9751,838	9916,6001	9835,2383		
	9752,		9835	10164,490	
	9752,2075		0835,7803	10164,219	5
	975 2,		9836,0513		
	9752,	9916	9836,3221		3
	9752,7601				
3	9752,944	9916,0805,	9836,8636		
3	9753,1	$\frac{9915,9937}{s_{1}}, \frac{550}{}$	9837, 1343	Tan.	-

	$\cdots \sin .35$	
	9758, 5913	9913.3645
	9758,7716	9713,2760
	9758,9519	9313, 875
	9759,1320	9913,0989
	9759,3120	9913,0102
	9759,4980	9912,9215
	-0750,6718	9 912, 2, 3_{327}
	9759,85 5	9912,7439
	-9760.0310	2912,655i
	9760,2105	-9912,5601
	9760,3899	9912,4772
	9760,5691	99,12,3881
	9760,7483	9510,2990
	9760,9273	9912,2099
	9761.1062	9912,1207
	9761, 2850	9212,0314
	2761,4637	9011,942i
	97613642	9911,8588
	9761,8208.	9911,7633
	9761,999:	9714, 6739
	-9762,1774	99.455843
	9762.3556	99114948
	9762,5336	9911,4051
	9762,7116	9911,3154
	2762.8894	2911,2254
	:9763.0671	2911,1359
	9763,2447	9911,0460
	9763.4222	9910,9561
	2753,5995	9910,8661
	19763,9768	9910,7761
	- 2763,9540	9910,6860
		Sin. 4^{4}

Tam. 35.	
9845,2257	10154,7732
9845,4956	101545043
9845,75.44	10154,2355
9546,0331	10'53,9668
9846,3018.	10153,6988
9846.5704.	10153,4295
9846,8390	10153,160
19847.1075	10152,8924
9847,3759	10152,6240
${ }^{19} 847.6444$	10152,355
98.47 .9127	10152,087
$98.48,1810$	10151.818
984:8,4492:	10151,5507 48
9848,7174	10151,2825
9848,9855	1015:014
9849,2536:	10150,7463
9849.5216	10150,4783
9849,7895	10150,210
9850,0574	10149,9425
9850,3253.	IO149,674
9850.5931:	ror 49,40
9850,8608	10149,139139
9851,1285	10148,871438
98.51,3962	10148,603883
9851.6637 .	$10148.3362{ }^{1} 3.6$
9851,9312	10148,0587
98521937	10747,8019 34
9852,4661	10147,5339
9852.7334	10:47,2665 52
9853,0007	10146,9992 32
9853,2680	$10146,7.320$
-	Sin. 540.10

	$\frac{\sin .360}{2769 ; 2186}$	9907,9576	Tan.36. ${ }^{86 \mathrm{t}, 26 \mathrm{I}}$	$10138,7389$	60
	9769,3925	9907,8658	9861,5266	10188,4733	59
	9769,5661	9907, 93.3	9861,792\%	10138.20\%7	8
	27699.7398	9907,6830	9862, 0558	1 D 13794	7
	976929133	2907,5900	9862, 3.232	10137,6767	36
	9770,0867	9907,4980	9862,5887	10137,4712	5
	9770,	9907,405.	986, 8544 I	10137,	
	9770;433 ${ }^{2}$	2907,3 537	2863, 2194	10236,8805	3
	9770,6063	9907,2215	9.869,3847	10136,6152	2
	9770,7793	9907,1293	-9863,6, 00		
10	9770,9521	9997,0	9863,9152	101	
II	977	9906,9446.	9854, 1.803	10435,819	
12	9771,2976	9906,8.5 2 i	9864,4454	107855	8
13	9771,4701	9906,7596	9864,7104.	10135	7
14	9771,6426	9906,6671	9864,9754	10135.	
1.5	9771,8149	2906,57.45	9865,2.404	10134475	
16	9771,9872	9906,48i8	9865,5053	101	
17	9772, 1.593	$9.906,389 \mathrm{~m}$	9865,7701	10134.22	3
18	9772,3313	2906,2964	9866,0349	10133,9650	42
19	9772,5033	9906,2035	9866,2997	10133,7002	4^{1}
20	2772,6751	9906,1.106	9866,5644	$10 \mathrm{C} 33,4355$	40
31	977.2,8468	29,06,0157	9866,829 ${ }^{\text {a }}$	10133,170	9
22	2773,0184	9905:9247	9867,093 ${ }^{\text {a }}$	10132,90	
23	2773,1899	9905,8317	9867,3582	10132,0	37
24	2773,3613	9905,7385	9867,6227	10132,377	36
25	9773, 5 ,326	2905.6454	9867,887.2	$\underline{1013291127}$	5
26	2773,7038	9905,5521	9 368,1516	10131;8483	4
27	9773,8749	9905,4580	9868,4160	10×3155839	33
28	9774,0459	9905,3655	9868,6803	1013r,319	32
29	9774,2168	2905,2721	9868,944	1013 $3,05.53$	31
30	9774,3876	9905, 7^{787}	9859,2088	10130,7911	30
		3		Tang.s	

M SiA. 36. $30 \quad 9774,3876$ 3下 9774,5582 $32.2774,7288$ (33 97774;8993 9775;0696 9775:2399
9775,4101
9775,5801
9775,750F
9775,9199
9776,0896
9776,2593
9776,4288 9776,5983 9776,7676 2776,9368 2777,1059 9777,2750 97774439 9777,6127 9777,7814 9777,9,500 9778 , 1186 9778,2870 9778,4553 9778,4235 9778.7916 9778,9596 9779,1275 977.9,2953 9779,4630

- 2.7	Tan. 36
9905, 1787	9869,2088
9905,2852	9859,4730
19904,9936	9869,73z2
9904, 9980	9870,0013
9904,8043	9870,2653
9904,7105	9870,5293
9904,6168	$9870,7.932$
9904,5229	98.71,0572
9904.4290	9871,3210
9904,335!	9871,5848
9904,2410	9871,8486
990.4, 1470	9872, 1123
9924,0528	9872,3759
9903,9586	9872,6396
9993,8644	9872,9032
9903,7701	9873,1667
2903,0757.	9873,4302
9903,5813	9873,6937
9903,4868	9873,9571
2903,3923	9874,2204
9903,2977	9874,4857
9903,2030	9874,7479
9903, 1083	9875,0102
9903.0135	9875,2734
9902,9187.	9875,5365
99P3, 8238	9875.7996
9902,7282	9876,0626
9902,6339	9876,3256
9902,5389	19876,5886
9902.4437	19876,855
990233480	2877. ${ }^{2} 144$
Sin.53.	

-	Sin. 37	9908,3486	$\left\lvert\, \frac{\text { Tan. }}{9877,15} 1\right.$	ror 22,8855	60
	9779,6	9902,2533		10122;6227	
2	9779,7981	2902,1581	9877,6400	10122,3599	
3	9779,9655	9902,0627		Ior22,0972	
4	9780,1328	9901,9673	9878,1654	Ior 2r, 8345	
4	9780,300	9901,8719	9878,4280	10121,5719	
6	9780,4670	9901,7764	9878,6907	roizt,3093	
7	9780;6340	9901,6808	9878,9532	CO121,0467	5
8	9780,8009	9901,5852	9879,2157	10120,7842	
9	9780,9677	9901,4895	9879,4782	10120,5217	5
10	9788,1344	9901,3937	9879,7406	roi 20,2593	5
	9781,3010	9901,2979	9880,0030	$10119,9,36$	
	9781,4675	9901,2021	9880,2654	IoI19,7345	
13	9781,6339	9901,1061	9880,5277	IOII9,4722	
14	9781,8001	9901,0102	9880,7899	10119,2100	
15	9781,9663	9900,9141	9881,0522	10118,9478	
	9782 j 1324	9900,81.80		10118,6856	
	9782,2984	9900,7219	9881,5765	IOE18; 4234	
18	9782,4643	9900,6257	9881,8386	10118,16:3	析
19	9782,6301	9900,5204	9882,1006	10117,8993	4
	9782,7957	9900,4331	9882, 3626	IO117,6373	40
21	9782;9613	9900,3367			
	9783,1,268	9900,2402	9882,8865	10117,1134	38
23	9783,2922	9900,1437	9883,1484	10116,8515	37
	9783,4575	9900,0472	9883,4103	IOI 16,5897	3
25	9783,6227	9899,9506	9883,6721	10116,3279	
	9783,7877	9899,8539	9883	10116,0661	34
	9783,9527	9899,7572	9884	IOI 15,8	33
	9784,1176	9899,6604	9884,4572		
	9784,2824	9899,5635	9884,7188	10115,2811	
30	9784,447:	9899.4666	1884,9804	101150195	
		520.52		I An.	

	Sin. 560	9899,4666	$\left(\frac{\text { Tan. } 37}{9887,9804}\right.$)	10115,0195	0
31	9784,6117	9899,3696	288, 2420	10114,7579	9
	9784,7762	9899,2726	9885,5035	10114,4964	8
	9784,9406	9899,1755	9885,7650	$101 \mathrm{~L} 4,2349^{2}$	27
	9785,1048	9899,0784	9886,0264	10113.9735	26
35	9785,2690	'9898,98:2	2886,2878	IOI 3,7121 2	25
	$\overline{9785,4331}$	9898,8839	9886,5492	10113,4508	
	9785,5971	9898,7866	9856,Sios	10113,1894	23
38	9785,7610	9898, GS92	9887,0717	TOII2,9282	2
	2785,9248	9898,5918	9887,3330	$10112,6669^{\circ}$	'
40	9786,0885	9898,4943	9887,5942	10112,4057	
	9786,2521	9898,3968	9887,85.53	TOII $2,144^{6}$	
42	9786,4156	9898,2992	9888,1164	1011!,8835	18
43	9786,5790	9898,2015	9888,3775	10111,6,24	17
	9786,7423	9898,1038	9888,6385	10111,3614	4
45	2786,9055	9898,0060	9888,8995	10111,1004	115
	9787,0687	9897,908 1	9889,1605	10110,8394	4
47	97877^{2317}	9897,8102	9889,4214	10110,5785	53
	9787,3946	9897,7123	9889.6823	$\text { Ior } 10,3176$	6
49	2787,5574	9897,6142	9889,943	10110,0568	8
50	9787,7201	2897,5162	9890,2039	10109,7960	110
51	9787,8827	9887,4180	9890,4647	10109,5352	29
52	9788,0453	9897,3198	2890,7254	10109,2745	5
53	97882077	9897,2216	9890,986I	10109,0138	87
54	9788,3700	9897,1232	9891,2467	10108,7532	26
55	2788,5322	9897,0249	9891,5073	10108,4926	65
55	9788,6944	9896,9264	9891,7579	10108,2320	0
	9788,8564	9896,8279	9892,0284	$10107,9715$	5
	9789,0184	$9896,7294$	9892,2880	$10107,7110$	0
	9789,1802	9896,6308	9892,5494	$10107,4505$	25
60	2789,3419	2896,5321	2892, 8098	$10107 ; 1901$	
		Sin. 33.		Tan.s2.	

	Sin. ${ }^{87}$	9996,532	9892,5098		
	78,				
2	9789,665	9896,33.46			58
3	9789,826́6	9896,2357			57
4	9789,988	9896,1368	9893,8511	10106, 1988	56
5		9895,0379	9894,113	10105,8886	55
$\overline{6}$	9790			1005,	54
7		9895,8398	9894.6317	10105,368	
8	97	9895,7406	9894,891	10105,1081	52
2	97		989		51
10	9790		9895		
I	970			10104,3280	
	979	9895,3434	9895		4^{8}
13	9791	9895,2440	9896		47
14	9791,5.952	9895,1445	0896		4.6
15	9791.7565	2895,0449	9896	4	
r6	979	9894,9453	989		
	9792,0	9894,8456	9897	10102,7687	
18	9792,2	9894.7459	989	10102,5090	4^{2}
	2792,3968	9894,6461	9897,7507	10102,2493	4
	9792,5566	9894,5462		10101,9896	40
21	9792,7			101	,
	9792,8	9894,3463	9898,	10101	8
	9793,	9894,2463	9898,789	10100	
	9793	9894,1462	9899,0487		36
25		9894,0460	9899,3082		
	9793		9899		
	9793	9893	9899,	101	
	9793,83	98	9900,	10099	3
	9793,9907	9893,6448	9900,3458	10099,	3
30	9794,1495		9900	10099	-30
		Sin. I		Tan.	

$\overline{\mathrm{M}}$	$\frac{\operatorname{Sin} .40 .}{9808}, 00675$	2884,2539	$\left\lvert\, \frac{\text { Tan. } 40 .}{\text { 9923, } 8135}\right.$	$\underline{10076,186}$
	9808,2180	9834,1479	9924,0700	10075,9299
2	9808,3684	9884,0418	9924.32	10075.6734
3	9808,5187	9883.9356	9924,5831	10075
4	9808,6690	9883,3294	9924,8395	10075
5	9808,8191	9883,7231	9925.0960	10074,9039
6	9808,9692	9883,6168	9925,35	100
7	9809.1192	9883,5104.	9925.6088	10074,3911
8	9809,2691	9883,4039	9925,8651	10074,1348
9	9809,4189	9883,2973	9926.1215	10073,8784
10	9809,3686	9883,1907	9926.3778	10073,6221
1 I	9809,7182	9883,0841	9926,6341	10073,36
12	9809,8677	9882,9774	9936,8903	10073,10
13	9810,0172	9882, 9706	9927,1466	10072;
14	9810,1665	9882,7637	9927,4028	10072,597
15	9810,3.58	9882,6568	9927.6590	10072,3409
16	9810,4650	9882,5498	9927,9152	10072,084
17	9810.6141	2882,4428	9928,1713	10071,82
18	9810,7631	9882.3357	9928.4374	10071,5725
19	9810,9120	9882,2285	9928,6835.	10071.3164
20	981r,0609	9882,1213	9928,9396	10071,0604
21	9851.2096	9882,0140	9929,1956	10070,8043
	9811,3583	9881,9066	9929,4516	10070,5483
23	9811.5058	9881,7992	9929,7076	10070,2923
24	9811,6553	9881,6917	9929.9636	10070.0364
25	9811,8037	9881,5842	9930,2195	10069,780.4
26	9811.9520	9881,4766	9930,4754	10069;5245
27	9812,1002	9831.3689	9930,7313	10069,2686
28	9812,2484	9881.2611	9930,9872	10069,0127
29	5812.3964	9881,1533	9931,2430	10068,7569
30	9812,5444	$\frac{9881,0455}{\text { Sin.49. }}$	9931,4989	$\frac{10068,5011}{\text { Tang. }}$

	8			10060,8369	
1					
		9877,5			
	-	9877.4501	9939,9284		
4	9817,5235	987733400	$99+0,183$	1005	
5	9817,6684	9877,2299	9940,4385	10059	
	9817,9581	9877,0095		1005	
8	9818, 1028	9876,899 ${ }^{\text {2 }}$		1005	
-	9818	9876,78.88		100	
	9858	9876,6784	99,41, 713	100	
	8 8:8		9942,9684	r0058	
	9818 ,		9942	10057	
	9818,	9876,346	9942,478		
	9818,	9876,236	9942,7331		析
15	9819,1132	9876,1253	$9.942,9879$	100	
16	98 ,	98	99		
	9819	9875	9943;497	10056,5024	
18	9819,	9875.78	943,752	10056	2
	9819,6888	9875,6816	9944,00	10055.9728	1
20	9859,	9875	9944,26	100	
2 I	9819			+005s	
	9820,	9875,3481		100	
	9820,2629	9875:2369	9945,026	100	37
	9820,4063	9875,	9945,2	100	$3{ }^{\circ}$
	9820,	9875,0141		1005	
	920,	9874,9027		1005	
	9820,				
	9820,				
	98	957,567		1	1
30	9821		9946;8	O	
				1 A	

$\frac{\mathrm{M}}{30}: \frac{\sin .410}{9821,2645}$	9874, 456	$\left\lvert\, \begin{aligned} & \text { Ian. } 41 . \\ & 9946,8084\end{aligned}\right.$	10053,1915
$1{ }^{1}$ 9821.4073	9874,3443	9947,06	100r2,9370
$32 \quad 982155.500$	$98742 ? 24$	9947.31. 5	10052,6824
33. 9821,6925	9874, 1205	99475720	10052,427
34 9821,8350	9874, <085	9947;8i6s	100521734
$35 \quad 9821,9774$	9873,8964	9948,0810	10051,9190
6, 9822,7198	$9^{87} 3.7843$	9948,3354	10656645
37 -9822;2620	9873,672	9948,5899	80051.4101
$38,9822,4042$	9873,5599	99488844	1005 I 155
3918822,5463	9873,4475	9949,0987	10050,9012
40 9822,6883	9873,375	9949,353	10050,6468
41 9822,6302	$9873,22.27$	9949,6075	100503925
42 9822,9720	9873,1102	994938618	160501381
43 9823,1138	987.9976	9950,4162	10049,8837
$44 \quad 9823,2554$	9872,8849	9950,3705	10049,6294
$45 \quad 9823,3970$	9872,7722	9950,6248	10049,3753
46, 9823,5385	9872,6594	9950,8791	10049,1208
$47,1883,6799$	9872,546.5	9951,1334	10048,8566
$48.9823,8213$	9872,4336	9951,3870	10048,6123
$49.9823,9625$	9872,3206	9951,6418	$10048,35^{81}$
$50,9824,1037$	9872,2076	2951,8,6\%	11048,1039
51 9834,2448	9872,0945	9952,1503	10647,8496 9
$52 \quad 9824,3858$	9871,9813	9952:4043	10047,5955
$53,9824,5267$	9871,8680	9952,6580	10047,3413 ? 7
$\begin{array}{lll}54 & 9824,6675\end{array}$	9871,7547	9952,9128	10047,0871
$[55 \quad 9824,8 \mathrm{c} 83$	9871.6413	9953.1669	10046,8330 $\frac{5}{4}$
56	9871,5279	9953,421	10046,5789
$57 \quad 98250896$	9871,4144	9953,6752	10046,3247
$58,9825,2301$	9871,3008	9953,9293	10046,0707
$\begin{array}{ll}59 & 9825,3701\end{array}$	9871,1871	9954,1833	10045,8166
$60 \quad 9825,5109$	9871,0734	9954,4374	10045.5625
	Sin.i48		Tan.48. M

	82	98		$045,5625$	
	9825,6, 515				
2					
3			9955		
4		9870,6179			
7		9870,5038	99	4	
7	2826				
8				10043,5306	
9		9870,0470			
		9869,9325	9956,9772	100	
		986,8181			
	981	19699,7036			
5	9827,	2869,5890	9957,7388.		
		18869,4744	9997,9927		
15	9827,6062	9869,3597	9958,2465	100	
		9869,1300	99 5.8,7541	10041,2458	
			9959,0079	10040,9920	
	9828,1619	9868,9001	9959,261		
	9828,3006	9868,7851	9959,5155		
		9868,6700			
	9828,57.78	9868,5548	9960,0230		
23	9828,7163	9868,4395	9960,2767	10039,7232	
		9868,3242	9960,5304	10039,4695	
25	9828,9930	2868,2088	9960	10039,2158	
	9829,2693	9867,9778	9961,2915	10038	
28	9829,4074	9867,8622	9951,5451	10038,4548	3
	9829,5	'9867,7466	19961,7988	10038,201 I	31
30	9829	9867,6,308	9962,0524		

	$\frac{\sin }{2833}, 43 \cdot 1$	9864,1274	$\left\|\frac{T a n \cdot 43 .}{9969,6558}\right\|$	$\frac{1}{10030,344^{2}}$	1
	9833,9187	9864,0095	9969,9091	10030;0908	
	9834,0541	9563,8917	9970,1624	$10029 ; 83.76$	6
3	9834,1894	2863,7737	9970,4156	10029,5843	87
4	9834,3246	9863,6556	9970,6689	10229,331	
5	9834,4597	9863,5375	9970,9221	10029,0778	55
6	9834,5947	9863,4194	9971,1753	10028,8246	6
7	9834,7297	9863,3011	9971,4285.	10028,5714	53
8	9834,8646	9863,1828	9971,6817	10028,3132	, 52
9	9834,9994	9863,0644	9971,9349	10028	51
10	9835,1341	9862,9459	9972,1881	100	
II	9835,2687	9862,8274	9.772,4413	10027,5586	49
12	9835,4033	9862,7088	9972,6945	102	$4{ }^{8}$
13	9835,5378	9862,5901	9972,9476	100	47
	9835,6722	9862,4714	9973,2008	10026,7991	46
15	9835,8065	9862,3526	9973,4539	10026,5460	45
16	9835,9408	9862,2337	9973,707r	-10026,2929	44
	9836,0750	9862,1148	9273,9602	100	,
18	9836,3091	9861,9958	9974,2133	10025,78	2
	9836,3731	9861,8757	19974,4664	10025,5335	4^{1}
20	9836,4770	9861,7575	2974,7195	10025,28	
21	9830,6109	9851,6383	9974,9726	10025,0274	9
22	9836,7447	9861, 5190	9975,2256	10024,7743	8
23	9836,8784	9861,3996	9975,4787	10024,5212	7
	9837,0120	9861,2802	9975,7318.	10024,2682	6
25	9837, 1456	9861,1607	9975,9848	10024,0151	35
	9837,2790	9861,04 11	9976,2379	10023,7621	34
	9837,4124	9860,9215	9976,4909	10023,5091	3
28	9837,5457	9860,8018	9976,7439	10023,256013	32
29	9837,6790	9860,6820	99.76,9969	10023,0030	3
30	9837,8122	9860, 56.2	9977, 2500	10022,7500 30	

	$\sin .44^{\circ}$	
	9841,7712	2856,9341
	11	
	9842,0327	
3	9842,1634	
3	9842,2939	
5	9842,4344	9856,3232
6	9842,5548	8
7	9842,6851.	98,6,0783
8	9842,8154	
9	9842,9455	9855.8332
0	9843,0756	9855.7105
15	9843,2057	9855.5878
2	9843.3 .356	9855.4650
13	9843,4655	9855.342 I
4	9843,5953	
15	9843,7250	985
16	2843, 8546	
	9843,9842	
	2844, 1137	9854.7266
19	9844,2.431	
20	2844,3725	$\underline{9854.4799}$
21	9844,5017	9854.3564
22	9844,6309.	9854.2329.
23	9844.760	9854.1093
	9844,8891	9853.9856
25	9845,0181.	9853.8618
26	9845,1469.	
27	9845,2758	9853.6141
28	9345:4045	9853.4902
29	9845,5332	9853.3661
30	9845,6618	98

9984.8371	1001521628
9985.0900	
9985.3428	
9985.5956	
9985.8484	10014,1515
9986.1012	10013,8987
9986.3	10013,6460
9986.606	10013,393?
9986.8595	100
9.987 .1123	10012
$9987 \cdot 3651$	10012,6349
9987.6178	LOOL 2,3821
9987.8706	1001
9988:1234	10011,8.766
9988.3761	10011,6238
9988.6289	10011,3711
9988.88 I 6.	10011,118
9989.1344	10010,8656
2989:3871	10010,6128
9989.6398	10010,3601
9989.8926	10010
2990.1453	10009,8546
9990.3980	10009,6019
9990.6507	10009,3492
9990.9035	10009,0965 3
9991.1562	10008,8437 35
9991.4089	10008,5910
9991.661 .6	10008,3383 33
9991.9143	10008,0856 32
9992.1670	10007,8329 31
9992.4197	10007,5802 30

Lectori practice Mathefeos fudiofo, S. P.

CANON nofter vfum haber, in Triangulorum fiparicorum folutione, eundem quem tabula Sinwhim rectorum \& Tangentium ab alijs editx, fed praxin paulo faciliorem. Nam eorum mnltiplicarionem pér additionem, \& divifionem per fubtractionem, \& extractionem radicis quadra$t x$ per bipartitionem cvitamus.

Vt fi datis tribus lateribus quxratur angulus, erit
Ve rectasgulum fib Sinibus crurum, ad quadratum Rady:
Ita rectangalum fub Sinibus femifumm x trium laterum,
"\& differentix inter hanc femifanimam \& bafin, Tad quadratum Co finus femianguli quxfiti.
Et in triangulo prim \mathfrak{x} pagina $\mathcal{P} Z S_{1}$ (referente Polum, Zenith, \& Solem) datis lateribus, PS Gr. 70 , \& ZP P Gr. 38 A1. $30, \& Z S$ Gr. 40 fi guxratur angulus $P Z S_{\text {s }}$ cuius bafis eft P S:fumma laterum erie Gr . 148 M .30 , femifumina Gr .74 M. 1.5 , differentia inter femifummam \& bafin Gr. 4 . M. i 5 :

Hic nos pro quadrato R ady ponimus 20000,0000 Radiy duplum, cui addimus 9983,3805 Sinum $G r .74$, M. 1.5, 8869:8.679 Sinum Gr. 4 , CME I 5 , fient 388 53, 2 484. Deinde pro rectangulo divifore addentes 9794,1495 Sinum Gr. 38 $M_{1} 30.89808,0675$ Sinum $G r .40$, facimus $19602,2170, \&$ auferimus è 38853,2484 , ita reftant 192510314 . Horum femiffis eft 9625,5157 Sinus femianguli externi $G r .24, M .58$ S. 24: \& Co. Inss fimianguli interni Gr. 65, N1. $1, S .36,8$ proinde totus angulus quafitus eft $G r .130, M .3, S, I 2$.

Quod fi quis pro Sixibas auferendis addat eorum complementa ad Radium, non alia indigebit fuberactione. Vc patere poteft ex collatione vtriufque praxeos.

$$
\begin{aligned}
& \text { Gr. } M \text {. } \\
& 70 \text { - } \\
& \begin{array}{llll}
38 & 30 & 9794,1495 & 205,8505
\end{array} \\
& \begin{array}{l}
40 \\
148 \\
\hline
\end{array} \\
& \frac{9808,0675}{19602,2170} \\
& \text { 191,9325 } \\
& \text { 9983,3805 } \\
& 415 \\
& \text { 9983,3805 } \\
& \text { 8869,8579 } \\
& \begin{array}{l}
\text { Gr.M.S. } \\
245824 \\
495648
\end{array} \\
& \begin{array}{l}
\text { Gr.M.S. } \\
245824 \\
495648
\end{array} \\
& \begin{array}{l}
\text { Gr.M.S. } \\
245824 \\
495648
\end{array} \\
& \begin{array}{r}
8869,8679 \\
20000,0000 \\
38853,2484
\end{array} \\
& \text { 19251,0314 Gr. M. S. } 19251,0314 \\
& 9625,5157 \quad 65136 \quad 9625,5157 \\
& 130312
\end{aligned}
$$

Eadem ratione, fed maiori compendio, folvuntur cxtera qux quari folent in triangulis Spharicis, fine ope 'Secantinm aut Sisuum verforum, vt pluribus non fit opus aut praceptis aut exemplis.

Idem fí defideres in triangulis rectilineis, adiunge noftris, Amici \& Collcga Herrici Briggy Logarithmos. Nam eo nicimur fundamento, eodem y yimur operandi modo.

Vale, \& fi hxc tibi gratia fuerint, plura à nobis in hoc genere expecta.

FINIS.

The firft thoufand Logarithmes

 now againe fet forth by the Authour Henrie Briggs profeffor of Geometric in the Vniverfitie of Oxford, who undertooke this worke at the entreatie, and with the approbation of the firf In. venter of Logarithmes, worthy of all honor, Iobs MEpeir Baron of Merchiftox.THe Reader hath here a fhort view of thole 30000. Logarithmes, which are now coming forth in Latin, and hereafec in Englifh, which will affoordus,

The Quinteffence of the Golden rule.
The valuation of Annuities, and the folution of all ordinary dificult queftions of that kind.

The guantitic of any plaine Triangle, whofe fides are given, together with the altitude thereof :the Diameters of the Circles infcribed and circumfcribed; and the quantitic of any of the Angles.

The Diameter being givé, the circumference \& Area of Circle, and the Superficies and Soliditie of a Globe.

The quantitie of auy round Caske.
And fo neare as may be, the fquaring of a Circle, the cubing of a Globe, the doubling or tribling of a Cube.
And in generall, The enlarging or diminifhing of any plaine or folid figure, keeping the fame forme; or the transforming it in any proportion affigned.

The alteration of the fides of any given plaine Triangle, keeping the fame Area, and the fame Perimeter.

The defcription of a Peripherie,every point whereof Thall frob the three angles of any givé Triangle, keep the diftances accordi ng to any poffible proportiós affigned.

Having two fides of a right angled Triangle given, to find the third: and generally all that may bee found in all righe lined Triangles whatfoever. In tenuif ed wou tenwio fruiturve laborve.

$N \tilde{x} . \mid$	Logarithm.
101	2004,32137
102	2008,60017
103	2012,83722
104	2017,03334
105	2021,18930
106	$=025,30,587$
107	2029,38378
108	2033,42376
109	2037,42650
110	2041,39269
111	2645,32298
112	2049,21802
113	2053,07844
114	2056,90485
115	2060,69784
116	2064,45799
117	2068,18586
118	2071,88201
119	2075,54696
120	2079,18125
121	2082,78537
1122	2086,35983
123	2089,90511
124	2093,42169
125	2096,91001
126	2100,37055
127	2103,80372
128	2107,20997
129	2110,58971
120	2113,94335
131	2117,27130
132	2120,57393
133	2123,85164
134	2127,10480

		Logarithm.	
427880	13	2127, 10480	
423705	13	2130,33377	
419612	136	2133,53891	
415593	137	2136,72057	315852
411657	138	2139,87909	$\begin{aligned} & 315052 \\ & 313571 \end{aligned}$
407791	138 140	2143,01480	,
403998			
400274	141	2149,21911	306923
396619	142	2152,28834	304770
393029	143	2155,33604	302645
389504	144	21	300551
386042	14		298486
382641	14	2164,35286	296447
379299	14	2167,31733	294439
376015	148	2170,26172	292455
372787	149	2173,18627 2176,09126	290499
369615	$\frac{150}{151}$	$\frac{2176,09126}{2178}$	288569
366495	151 152	2178,97695	286664
363429	152	2181,84359	284784
360412	153	2184,69143	
357446	154	2187,52072	281098
354528		2190,33170	279290
351658		2193, 12460	277505
348832	157 158	2195,89965	275744
346054	158	2198,65709	274003
343317	159 160	2201,39712	272286
340625	16	$\frac{2204,11993}{22068258}$	
337974	16	2206,82588	268913
335364	1162	2209,51501	267259
332795	163	2212,18760	265625
330263			264009
327771		2217,48394	
325316	16	2220,108	260838
322897	167	2222,7	

1	.		$N \widetilde{u}$		
	2222,71647	259281	201	2303:19606	1
168	2225,30928	25774^{2}	202	2305,35137	$\begin{aligned} & 31 \\ & 67 \end{aligned}$
49	$2.227,88670$	256222	203	$2307,49604$	$\begin{aligned} & 67 \\ & 1 \end{aligned}$
170	$2230,44^{892}$	254719	204	$2309,63017$	$\begin{aligned} & 13 \\ & 69 \end{aligned}$
1	2232,99611	253234	205	2311,75386	
2	2235,52845	251.765	206	2313,86722	
	2238,04610	250315	207	35	$\left.\begin{aligned} & 3 \\ & 8 \end{aligned} \right\rvert\,$
174	2240,54225	248880	208	2318,06333	10
175			209	2320,14629	
76	224		210	2322.219.29	
177	224797327		211		206317
178	2250,42000		212	2326,33586	
8.79	2252,85303		213	2328,37960	$\begin{aligned} & 204374 \\ & 203417 \end{aligned}$
	2255,272 ${ }^{1}$			77	
1	2257,67857		215	43846	
182	2260,07139	237970			$\begin{aligned} & 9 \\ & 8 \end{aligned}$
-	2262,45109		217	2336,45973	6
	2264,81782	235391	218	2338,45649	
5	2267,17173		219	2340,44411	190782
			220		
187	2271.84161		221		196070
	22.74,15785		222	1	195189
189	2276,46180	229180	223	$2348,30486$	$\frac{9}{6}$
190	2278,75360				3450
191	2281,03337		225	2352,18252	192592
1.92	2283,30123	225608	226		191742
193	2285,55731			2356,02586	190899
		223288	2	2357,93485	$\begin{aligned} & 19 \mathrm{col}_{3} . \end{aligned}$
195			2	2359,83548	189236
	2292,25607			$2361 ; 72784$	
197	2294,46623	219897	2	2363,61198	
898	2296,66519	218789	232	2365,48798	
199	2298,85308	217691	233		
220	2301,02999	216606	,	2369,21586	

N0.	Logarithm:	for.		Logarithm.	
234	2369,21586	185200		2420,51126	
235	2371,06786	$\overline{18}+414$		2428,13479	
2	23		369	2429,75228	
237	2374,74835	18.2861	27.	2731,363701	
23.8	2376,57696	$18209+$	271	2432,96929	
230	2378,39790	131	272	2434,56890.	
240	2380,21124	18.5500	273	2436,16265	
241	2382,01	179833	274	2437,75056	
242	2383,81537	179090	275	2439,33269	
243	2385,60627	178356	276	2440,90908	157069
244	2387,38983	177625	277	2443,47977	156503
245	2389,16608		78	${ }^{2} 444 ; 04480$	155940
246	2390	176184	8	2445,60420	155383
247	2;92,69695	175473	28	2447,15803	154829
248	$2394,45 \mathrm{r} 68$	174767	2 \%	2448,70632	
249	2396,19935	174066	282	2450,24911	
250	2397,94001	173371	203	245	153190
251	2399,67372	172682	4	2453	152652
	2401,400;4	171993	28	2454,94486	
253	2403,12052	171320	286	2456,36603	
254	2404,83372	170646	287	2457,88190	
2	2406,54018	169979	288	2459	
25	2408,23997	169315	289	:460,89734	16
	2409,93312	168659	29	${ }^{2} 4^{63}, 39800$	
358	2411,6i971	168009	291	2463,89299	148956
259	2413,29976	$\frac{167359}{166716}$	293	2465,38285	148477
	2414,97335		29	2466,86762	
	2416,64051	166078	294	2468,34733	147469
	2418,30129		295	2469,82202	146969
	2419,95575		296	2471,29171	146474
	2421,60393		297	2472,75645	145981
	2423,24587	163577	298	2474,21626	${ }^{1} 45493$
266	$24^{2} 4,88164$	162962	299	247595719	145006
267	2426,51126	152353	$300 \mid$	3477,12125	144524

			220	Logarithm.	
	2478,56650	,	334		
	2480,00694	$\begin{aligned} & 44 \\ & 69 \end{aligned}$	335	2525,04481	
	2481,44263	$\begin{array}{r} 143509 \\ 143095 \end{array}$	336		
304	2482,87358	142626	337	2527,62990	
305	2484, $2998{ }_{4}^{4}$		338	2528,91670	128300
306	2485,72143	141695	339	2530,19970 2531,4780	127922
307 308	2487,13838 2488,55072	14124	340	25	127546
	2488,55072 3489,95848	140776	341	2532,75438 253402611	
	2489,9 2491,3	140321	342	253402611	126801
				2535,29412 2536,55844	
3.	24		344		
312		± 38975	345		
313	249	138531	3.46		125337
31	2496,92	338090	347	2540,32947	
31	2498,31055		348	2541,57924	124619
16	249,9,68708	137218	349	2542,82543	124261
317	2501	${ }^{1} 36786$	350	2544,06804	123908
3	2502,42	136356	351	2545,30712	123554
319	2503,79068	135930	35^{2}	2546,54266	123205
	2505,14998		35	2547,77471	122855
321	2506		35	2549,0032	122509
323	2507,85587		355	25	
323	2509,20252	134249	350	2551,45000	22
${ }^{32} 2$	2510,54501	133835	357	2552,6682	
325	2515,88336		358	2553,88303	
326	2513		35.9	2555,09445	120
$3^{2} 7$	2514,54775	13		255	
3.28	2515,87384	132206	361	2557,50	
29	2517,19590		362	2558,70857	119806
330	2518,51394		363	2559,90663	-11947
331	2519, 8,2792		${ }^{364}$	2561, 10138 ${ }^{8}$	119148
332	2521,13808		36	2562,29286	11883
333	2522,44423	130224	36	256	
	25.			258	1118176

	Logarith	Difer		Logar	D_{i}
	2564,66605		401	2603	
368	2555,84782	11785	402	2604,22505	
3.69	2567,03637	117535	403	2605930505	
370	2568, 20172	172-1	404	2606,35137	107365
371	2560, 37391		405	2697,45503	
373	2570,54	116989	406	$26.08,526.3$	109838
374	2571,70883,	116277	407	2609,59.444	
374 375 37	2572,87160,	115967	408	2510,6	
$\frac{375}{376}$	2574,03127.	115657,	409 40	$2611,72,31$ 2612,7838	10695
376 377	2575,1871	115351 115045	4 I	$2613,8+882$	105796 105540
378	2577,49180,		41^{2}	26:14, $8972 \times$	105283
379	2578,63921	114439	413	2655,95035	105029
381	$\underline{2579,78360}$	114138	${ }_{4}^{414}$	2617,00034 26180481	104776
381 382	2580,92498	113838		2618,04810	
	2582;06336	113541	416	2619,09333	104272
383	2583,19877,	245	${ }^{417}$	2620,13605	104023
	2587,33122	951	418		103774
385	2585,46073	112657	+319	${ }_{262}^{262,21402}$	103527
	${ }_{2} 288$	112367	421	2624,28210	103
388	2588,8.317	112078	$4{ }_{4}{ }^{2}$	2625.31245	
389	2589,94960	141501	423	$26.6,34037$	
390	2591,06461	11	424	6,77,36586	102307
39.	32592,17670	110931	${ }^{4} 25$	628,35893 ${ }^{\text {a }}$	102057
1392	2593,28507	$1{ }^{1} 6648$	425	2629,40950.	101828
1393	2594,39255	110367	427	26,30, 427888:	101580
1394	259, 49622	110088	428	2631,44377	101352
395	2595,59710	109809	142	2632,4	10117
	2597,69519	109532	430	2633,46846	$1008 \overline{81}$
	32598,79051	109256	432	$2634,47727$.	${ }_{100648}$
398	3599,88307	208983	432	2635,48375.	100415
	2600397230	108709	143	3636,48790	100183
400	62602,05999	1.08438	4341	2637,48973	99953

				Differ.
435	$2637,48973-99953$		36	
435	2638,48926	468	$2670,241$	
436	$\overline{2639,48649}$ 99495	469	2671,172	
437	2640, $4^{81} 44$ 99267	47	2672,097	
43^{8}	2641,47411	472	2673,0209	09
439	2642,46452 268515	472	267	
440	$\underline{2643,45268 ~} 985$	473		
44.	2644,43859 98368	474	$\begin{array}{r} 2675,77834 \\ -2676 \end{array}$	91527
44^{2}	$2645,42227 \quad 98146$	475		91334
44.3	2646,40373 97924	476	-2677,60695	
444	2647,38297 97704	477	2678,51838	90952
445	$2648,3600 \mathrm{t}$ - 97485	478	0°	90761
446		479	2680,33551	90573
47	2650,30752 97049	$\frac{480}{88}$	2681	90384
析	$2651,27801-96833$	48		90196
449	2652,24634 26617	482	2683	90009
450	2653,21251	483	2683,94713	89823
45 I	2654,17654 96189	484	2684,84536	89638
452	2655,13843 95977	485	$\overbrace{2685974174}$	89453
453	2656,09820 95765	486	2686,63627	89269
454	2657,055859	487	2687,52896	89086
455	2658,01140 95344	488	2688,41982	88904
456	$2658,96484.95136$	489	2689,30886	88722
457	2659,91620 94928	490	2690, 19608	41
458	2660,86548	491	2691,08149	8836 I
459	2661,81269 94514	492	2691,95510	-88182
450	2662,75783 - 94310	493	2692,84692.	88
461	2663,70093 94105	494	3693,72695	87825
462	2664,64198 9 93	495	2694,60	87648
46_{3}	2665,58099 93699	496	2695348158	87471
464	2666,51798 93497	497.	2696;35639	87295
465	2667,45295 93297	498	2697,22934	87121
466	2668,38592 9,3096	499	2698; roos	86945
467	2669,31688 $\quad 928$	50	:698,9700	86772

			5	2728,35378	81101
			5	2729,16479	
			537	2729,97429	
	2703,2913		538	2730,78228	
			539	2731,58877	
	2705,007		540	2732,39376	
	2705,86				
	2706		542	27339992\|	
	2707		543	2734,79983	
	2708,42090		544		-
	2709.26996		54	2736,39650	
	2710,11737				
	2710,96312	8441 I	547		79323
5	2711,80723			2738,78056	79178
			549	2739	79035
			5	2740	
	2714.32976			274	
	2715,16736	83598	552	2741	78605
	2716,00334			2742,72513	
			554		78322
	27	8	55.5	2744,29298	
	2718		556	2745,07479	
	2719,33129	82801	557		
	2720,15930			17	
	2721,				
	2722,			T	
	2723,45567	82020	562	2749,73632	77207
	2724		563	2750,50839	
				2751,27910	76925
532	2725,9		56	2752,04845	
\{53	2726,72.721	81405	566		
534	2727.54126	8125 ${ }^{2}$.	5671	2753,5830	76528

2	Logarithm.				
567	2753,58306	76528	601	2778,87447	
568	2754,34834	76393	602	2779,59649	72082
569	2755,11227	76259	603	2780,31731	71963
57	$2755,874{ }^{36}$	76125	604		
57.	2756,63612	75992	605	2781,75537	71725
572	2757,39603	75859	606	278	71607
573	2758.75462	75727	607	2783,1886,	
574	2758,91159	75595	60	2783,9035	71371
575	2759,66784	75454	609	2784,61729	71255
576	2760,42248	75333	610	2788.3298	71137
577	2761,17581	75203	611	2786,0412	7 O 21
57	2761,92784	75072	612	2786,75142	70905
579	2762,67856	74943	613	2787,46047	70790
580	2763,42799	74814	614	2788,16837	7067
58 I	2764,17613	7468s	615	2785,87512	70559
582	2764,92298	74557	616	2789,58,71	70445
583	2765,66855	74430	617	2790,28516	70332
${ }^{5} 4$	2766,41285	74302	618	2790,98848	702.17
5.85	2767,15587	74175	61	2791,690	70104
	2767, 89762	74048		2792,39169	69991
58	2768,63810	73923	621	2793,09160	69878
588	2769,37733	73796	632	2793.79038	69767
589	2770,11529	73672	62	2794,48805	69654
590	2770,85201		6	2795,18459	69543
591	2771,58748	73423	62	2795,88032	69431
59.	2772,32171	73298	6.2	2795,57433	69321
59	2773,05469	73175	627	2797,26754	69210
594	2773,78644	73053	628	2797.9596	69101
595	2734,51697	72929	1630	2798,65065	
90	2775,24626	72807	630	2799,34055	
	2775,97433	72685 72564	631 6.32	$\begin{aligned} & 2800,02936 \\ & 2800,71708 \end{aligned}$	68772 68663
	2776,70118	72564 72443	$6{ }_{632} 6$	$\begin{aligned} & 2800,7^{170.8} \\ & 280 r, 4037^{2} \end{aligned}$	68859
6	2777,42682 2778,15125	$\begin{aligned} & 72443 \\ & 72222 \end{aligned}$	633 634	$\begin{aligned} & 2801,4037 \\ & 2802,089 z \end{aligned}$	$\begin{aligned} & 6855 \\ & 6847 \end{aligned}$

○						

$\frac{N \vec{u}}{701}$		Differ.	$\left\|\frac{N \tilde{n}}{324}\right\|$		Differ.
	$2845,71802$	61909 61823		2865,69606 2866,28734	59128
702	2846,33711	61823	735		59047
703	2846,95533	61733	736	2866,8778r	58968
704	2847,57266	61646	73.7	2867,46749	58887
705	2848,18912	61558	738	2868,05636	58808
706	2848,80470	6_{1471}	739	2868,64444	58728
707	2849, $4^{19} 94^{\text {I }}$	61385	74°	2869,23172	
708	2850,03326	61298	$74{ }^{\text {a }}$	2869,81821	
709	2850,64624	6121 i	742	2870.40391	58490
	2851,25835	61125	743	2870,98881	58413
$7{ }^{11}$	2851,86960	61039	744	2871,57294	58333
712	2852,479	60	745	2872, 5 5627	58256
$7{ }^{13}$	2853,08953	60868	746	2872,73883	58197
74	2853,69821	60783	747	2873,32060	-
715	2854,30604	70698	748	2873,90160	58022
716	2854,91302	60614	749	887	57944
717	2855,51916	60528	750	287506126	7808
718	2856,1	60445	751	2875,6399	57790
719	2856,7288?	60361	752	2876,2178	
72	2857,33250	$\overline{60276}$	753	2876,79498	57637
721	2857,93526	60194	754	2877,37135	57560
	2858,53720	60110	755	2877,94695	
723	2859,13830	60027	756	2878,52180	57408
$7^{72} 4$	2859,73854	59944	757	2879;09588	57333
725	2860,33801	861	758	2879,66921	257
726	2860,93662	59779	759	2890,24178	57181
727	2861,53441	59697	760	2880;8r350	57107
728	2862,13138	59615	761	2881,38466	57031
729	2852,72753	59533	762	2881,95497	56957
730	2863,32286	59452	763	2882,52454	56882
I	2863,91738	59370	764	2883,09336	56808
732	2864,51108	59289	765	2883,66144	56733
	2865,10397	59209	766	2884,22877	56659
	2865,69606	59128	1767	2884,79536	56586

			2 [s Logariabina	
	2	$\underline{2043}$	2938,019.10	
8		51	868 2938,51973	
836	2.		869 2939,01978	47
	29			
83		51794	871 2940,01816	
839		51733	87229	4977
84			$873-2941,01424$	49719
			$874 \quad 2941,51143$	- 49662
8	2925	515.48	$875 \quad 2942.00805$	
	2.25	51488	876 2942,50411	
	2926,34245	51426	$877 \quad 2942,99959$	
			8) 2943,49452	
			879 <2	
	29		880	4
	2928,39585		881 2944,97591	68
		51124	882	21.1
850	29		883	57
			884 2946,45227	0
			2946,94327	
			2947.43372	
			887 2947,92362	
	293		888 2948,4r297	
85			2948,90176	
8	2932,98082		2949,39001	
8		50587	891 2949,87770	
8	2933 ,	50529	892 2950,36485	661
			893 2950,85146	
			894 2951,33752	
862			895 -2951,82304	
863	2936,01080		896 2952.3080	3
8	2936	50237	897	390
6	2937		898	
			$899.2953,75969$	282
867	2938.01010	50063	$90002954,24^{2}$	48228

	2954,72479		934		
	2955,20654		935	$2970,8116_{1}$	
4.			936		
5			937		
	2957		38		
	2957				
		47803			
	2958	47751 4768			
910	2959,04139				400
911	2959.5		944		4603
912	295929448	47594	945	29754	
$9^{1} 3$	2960,47078	47542	946		45
$9^{17} 4$	2, 60,94620	89	946	$\begin{aligned} & 2976 \\ & 297 \end{aligned}$	
915	2961,42106		947	$\begin{gathered} 2966 \\ 2976 \end{gathered}$	
916	2961,89		949		
917	2962,36934	47334	950		$4574{ }^{\circ}$
918	2962,84		251		
919	2963,315	47232	25		45643
920	2963,78783				45595
921	2964,25963	47129	954		4554
922	2964,73092	470	955	2980	4550
923	2965,2017		956	2980	45452
924	2965,67197	46976	957	$2980,91194$	45405
92	2966,14173		958	$2981,3655 \mathrm{I}$	10
926	29	46874	959	2981,81862	45310 452.62
	2967,0797 2967,5479	46825	960	2982,27123	
92	2968,0r571		96		4516
930	2968,48295		962		4512
931	296894		${ }^{96}$	298	
932	2969,415		1965	298	
33	2969,88164		1966		
934	29703.4688	46473	[967	$2985,4264$	

	28	44795		2993,87691	
970	2986				
71				2994	43935
972	2987,66626	44		2995	
	2988	12		29950	
974	2988,		991	2996,07365	
	2989 ,			296,5107	43758
976	298		293	2996,94925	43713
	2989,8945	44429	99	2997,82308	
	2990,3388			2997, 22308	3626
	2990,78269			2998,25934	82
	2991,22608			2998,69516	
$\overline{985}$	2991,6			2999,1	
	2992,11149			,	43451
	2992,5535	441		2.3000;00000	

FINIS.

[^0]: So the Logarithme of 8 being 0903.08999 the Logarithme of $\quad 27 \quad 143$ 1.36.376
 the difference betweene them $\quad 578.27377$
 The third part of this difference
 170.09126
 added to the Logart:hme of 8 . giucs
 1079.88125 the Logar ithme of $\mathbf{1 2}$. the leffer Meane.

 The lame added to the Logarithme of 12 . giues 1255° 27251 . the Logarithme of 18. the Greater Meane Proportionall.

[^1]: 2 As the cofine of PR $34.730 .-9917,934^{2}$

